Prof. Dr. J. Struckmeier

Dr. H. P. Kiani

Differential Equations II for Engineering Students

Work sheet 4

Exercise 1: See Lecture pages 47-53

Consider the initial value problem

$$u_{xx} - 3u_{xt} - 4u_{tt} = 0 \quad \text{for } x \in \mathbb{R}, \ t \in \mathbb{R}^+$$
$$u(x,0) = 0 \quad \text{for } x \in \mathbb{R},$$
$$u_t(x,0) = 2xe^{-x^2} \quad \text{for } x \in \mathbb{R}.$$

- a) Rewrite the PDE in matrix form.
- b) Carry out the substitution $\alpha=x+\frac{t}{4},\,\mu=x-t$ and give the PDE in matrix notation for $v(\alpha\,,\mu):=u(x,t)$.
- c) Solve the PDE for u by first solving the PDE for v and transforming back afterwards.
- d) Determine the solution u for the initial value problem.

Solution:

a) Matrix form: $(\nabla^T \mathbf{A} \nabla)u + (b^T \nabla)u + cu = h$.

Here the Matrix form of the PDE is

$$(\nabla^T A \nabla) u = \nabla^T \begin{pmatrix} 1 & -\frac{3}{2} \\ -\frac{3}{2} & -4 \end{pmatrix} \nabla \cdot u = \mathbf{0}$$

b) With $S^T := \begin{pmatrix} 1 & \frac{1}{4} \\ 1 & -1 \end{pmatrix}$ we obtain the following PDE for v

$$\nabla_{\alpha\mu}^T \mathbf{S}^T \mathbf{A} \mathbf{S} \nabla_{\alpha\mu} v = \mathbf{0}.$$

where
$$\mathbf{S}^T \mathbf{A} \mathbf{S} = \begin{pmatrix} 1 & \frac{1}{4} \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -\frac{3}{2} \\ -\frac{3}{2} & -4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ \frac{1}{4} & -1 \end{pmatrix} = \begin{pmatrix} 0 & \frac{25}{8} \\ \frac{25}{8} & 0 \end{pmatrix}$$

Hence the PDE for v is

$$\nabla_{\alpha\mu}^{T} \mathbf{S}^{T} \mathbf{A} \mathbf{S} \nabla_{\alpha\mu} v = \left(\frac{\partial}{\partial \alpha}, \frac{\partial}{\partial \mu}\right) \begin{pmatrix} 0 & \frac{25}{8} \\ \frac{25}{8} & 0 \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial \alpha} \\ \frac{\partial}{\partial \mu} \end{pmatrix} v = \frac{25}{4} v_{\alpha\mu} = 0 \iff \boxed{v_{\alpha\mu} = 0}$$

c) Solution of the transformed PDE:

From $(v_{\alpha})_{\mu} = 0$ it follows that v_{α} does not depend on μ .

$$v(\alpha,\mu)_{\alpha} = \phi(\alpha) \stackrel{\int d\alpha}{\Longrightarrow} v(\alpha,\mu) = \Phi(\alpha) + \chi(\mu)$$

and

$$u(x,t) = v(\alpha,\mu) = \Phi(x + \frac{t}{4}) + \chi(x-t)$$

with sufficiently smooth functions Φ and χ .

d) From the initial data we obtain two conditions

$$u(x,0) = \Phi(x) + \chi(x) \stackrel{!}{=} 0$$
 and $u_t(x,0) = \frac{1}{4}\Phi'(x) - \chi'(x) \stackrel{!}{=} 2xe^{-x^2}$.

From the first equation we obtain

$$\chi(x) = -\Phi(x)$$

and thus the second equation reads

$$\frac{1}{4}\Phi'(x) + \Phi'(x) \stackrel{!}{=} 2xe^{-x^2} \iff \Phi'(x) = \frac{4}{5}\left(2xe^{-x^2}\right).$$

Integration delivers

$$-\chi(x) = \Phi(x) = -\frac{4}{5}e^{-x^2}.$$

The solution to the initial value problem is therefore given by

$$u(x,t) = \Phi(x + \frac{t}{4}) + \chi(x-t) = -\frac{4}{5}e^{-(x+\frac{t}{4})^2} + \frac{4}{5}e^{-(x-t)^2}.$$

Exercise 2: Hint: See lecture page 60 and 65.

- a) Let α be a fixed real number from $\mathbb{R}\setminus\{0\}$. For which real-valued functions $g:\mathbb{R}\to\mathbb{R}$ are the following functions harmonic in \mathbb{R}^2 ?
 - i) $\tilde{u}(x,y) = \cos(\alpha x) \cdot g(y)$, ii) $u(x,y) = \frac{1}{2} \cdot (x^3 + g(x) \cdot y^2)$.
- b) Let $\Omega := \{(x,y)^T \in \mathbb{R}^2 : x^2 + y^2 < 16\}$ and u be the solution of the boundary value problem

$$\Delta u(x,y) = 0$$
 in Ω , $u(x,y) = \frac{2y^2}{x^2 + y^2}$ on $\partial \Omega$.

Determine the value of u in the origin.

- Use polar coordinates and the mean value property (lecture page 65).
- Note: $\sin^2(\varphi) = \frac{1 \cos(2\varphi)}{2}$.

Solution:

a) i)
$$\Delta \tilde{u}(x,y) = -\alpha^2 \cos(\alpha x) g(y) + \cos(\alpha x) \cdot g''(y) \stackrel{!}{=} 0, \quad \forall x, y \in \mathbb{R}$$

 $\implies g''(y) - \alpha^2 g(y) \stackrel{!}{=} 0.$

This is an ODE with characteristic polynomial $P(\lambda) = \lambda^2 - \alpha^2$ and the general solution $g(y) = k_1 e^{-\alpha y} + k_2 e^{\alpha y}$.

 \tilde{u} is harmonic in \mathbb{R}^2 if and only if

$$g(y) = k_1 e^{-\alpha y} + k_2 e^{-\alpha y} \qquad k_1, k_2 \in \mathbb{R}.$$

ii)
$$\Delta u(x,y) = \Delta \left(\frac{1}{2} \cdot (x^3 + g(x) \cdot y^2)\right) \stackrel{!}{=} 0, \quad \forall, x, y \in \mathbb{R}$$

 $\Longrightarrow \frac{1}{2} \cdot (6x + g''(x)y^2 + 2g(x)) \stackrel{!}{=} 0, \quad \forall, x, y \in \mathbb{R}$
 $\Longrightarrow g''(x) = 0 \text{ and } 6x + 2g(x) = 0 \Longrightarrow g(x) = -3x.$

 \tilde{u} is harmonic in \mathbb{R}^2 if and only if g(x) = -3x.

b) Let K_4 be the edge of the disk with radius 4 around zero and $c(t) = (4\cos(t), 4\sin(t)), \qquad t \in [0, 2\pi]$

a parameterization of K_4 . Using the mean value theorem one obtains

$$u(0,0) = \frac{1}{2\pi \cdot 4} \int_{K_4} \frac{2y^2}{x^2 + y^2} d(x,y) = \frac{1}{8\pi} \int_0^{2\pi} \frac{2 \cdot 16 \sin^2(t)}{16 \cos^2(t) + 16 \sin^2(t)} \cdot ||\dot{c}(t)|| dt$$
$$= \frac{1}{8\pi} \int_0^{2\pi} (1 - \cos(2t)) \cdot 4 dt = 1.$$

Exercise 3: Hint: Lecture pages 61-64 and 69

a) Let

$$\Omega_2 = \{(x, y)^\top \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4\}.$$

Determine the solutions of

$$\begin{cases} \Delta u = 0 & \text{on} & \Omega_2, \\ u(x, y) = 1 & \text{for} & x^2 + y^2 = 1, \\ u(x, y) = 3 & \text{for} & x^2 + y^2 = 4. \end{cases}$$

Is the solution unique?

b) Let

$$\Omega_3 = \{(x, y, z)^\top \in \mathbb{R}^3 : 1 < x^2 + y^2 + z^2 < 4\}.$$

Determine the solutions of

$$\begin{cases} \Delta u = 0 & \text{on} & \Omega_3, \\ u(x, y, z) = 1 & \text{for} & x^2 + y^2 + z^2 = 1, \\ u(x, y, z) = 3 & \text{for} & x^2 + y^2 + z^2 = 4. \end{cases}$$

Is the solution unique?

Solution:

According to lecture pages 63/64, every rotationally symmetrical harmonic function on $\mathbb{R}^n \setminus \{0\}$ can be represented as

$$u(\boldsymbol{x}) = a\Phi(\boldsymbol{x}) + c, \qquad a, c \in \mathbb{R}$$

by using the fundamental solution $\Phi(x)$.

(a) Since $(0,0)^{\top} \notin \Omega_2$, using

$$\Phi(x,y) = -\frac{1}{2\pi} \ln(\|(x,y)\|_2)$$

we obtain

$$u(x,y) = -\frac{a}{2\pi} \ln \left(\sqrt{x^2 + y^2}\right) + +c.$$

The boundary values require

$$u(x,y) = 1$$
 for $x^2 + y^2 = 1$,
 $u(x,y) = 3$ for $x^2 + y^2 = 4$.

From the first boundary value we obtain

$$-\frac{a}{2\pi}\ln(1) + c = c \stackrel{!}{=} 1$$

and therefore the second boundary value gives

$$-\frac{a}{2\pi}\ln(2) + 1 \stackrel{!}{=} 3 \Rightarrow a = -\frac{4\pi}{\ln(2)},$$

i.e.,

$$u(x,y) = \frac{2}{\ln(2)} \ln\left(\sqrt{x^2 + y^2}\right) + 1.$$

The uniqueness follows from the maximium principle (see page 69 of the lecture).

• Analogous to part a), the lecture provides

$$u(x, y, z) = a\Phi(x, y, z) + c,$$
 $a, c \in \mathbb{R},$

with fundamental solution

$$\Phi(x, y, z) = -\frac{1}{4\pi} \|(x, y, z)\|_2^{-1}.$$

The boundary values give the conditions

$$\frac{a}{4\pi}+c=1, \qquad \frac{a}{8\pi}+c=3 \qquad \Rightarrow \qquad a=-16\pi, \quad c=5,$$

i.e.

$$u(x, y, z) = -\frac{4}{\sqrt{x^2 + y^2 + z^2}} + 5.$$

The uniqueness again follows from the maximum principle.

Discussion: 09.06.- 13.06.2025