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Exercise 1:
We are looking for solutions of the heat equation in one spatial dimension:
U — ClUypy = 0

with a fixed parameter ¢ € R (thermal conductivity / diffusion coefficient).
Show that for any number w € R and for any k € Z

up(z,t) = sin ( kwa ) - e"Fw
is a solution of the differential equation .

Obviously, a so-called product ansatz: u(x,t) = q(t) - p(z) leads to solutions of the heat
equation.

Solution 1:

Deriving u; we obtain

&uk(:z;, t) = —ck®w?sin ( kwaz ) - e~ **
a—uk(x, t) = kwcos ( kwz ) - e~
x
82 2,2
Wuk(m, t) = —k*w?sin ((kwz) - e F T,
T
Hence 5 o
guk(x,t) — c@uk(x,t) =0.
Remarks:

n
« According to homework 1), every finite linear combination »_ agu(z,t) of these
k=m
functions is also a solution of the differential equation .

e A so-called product ansatz: u(x,t) = q(t) - p(x) yields

p(x)4(t) — ep”(x)q(t) = 0.
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Rearranging provides
q(t)

qlt) L p'()
q(t)  plo)

Since the right-hand side depends only on x and the left-hand side only on ¢, both
sides must be constant. For example, with a fixed number A € R:

i) L @

q(t)  p(z)

We therefore obtain a system of two ordinary differential equations coupled via the
parameter A. Later in the semester, we will deal with the solution of this system in
detail.
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Exercise 2:
We now consider the Telegraph Equation.
A signal of the periodic voltage

U(0,t) = Upcos(wt) t>0

is fed in at the starting point = = 0 of a very long transmission cable. We are looking for the
signal voltage U(z,t) of the output signal for z > 0,¢ > 0. One obtains U as the solution
of the differential equation

Utt — CQUME + (Oé"‘ﬁ)Ut + OéﬁU =0.

Where «, 5, ¢ are positive parameters determined by the problem. A temporally periodic
input signal leads to the expectation of a temporally periodic output signal after a certain
transient phase. In addition we expect that

U(xz,t) is bounded for 2 — oo.

a) Show that an approach that combines a local dampening (factor e~** ) with a temporal-

ly periodic behavior (i.e. cosine/sine in ¢) and allows for a linear location-dependent
phase shift leads to success. For example:

Ul(z,t) = e~k (5 cos(ut —yx) + Ssin(ﬂt — ﬁ:p))

For the sake of simplicity, set a =3 =c=1.
Hint: a?0* +a*> -0 —1= (a* - 1)(b* +1).

b) (Only for very fast students)
Show that the product approach U(z,t) = w(x) - v(t) is not successful here.

Again, choose a = =c=1.
Solution 2:

a) Using the ansatz: U(x,t) := e " . (5 cos(ut — yz) + 0 sin(jit — 'Nyx))

the boundary condition reads
U(0,t) = § cos(ut) + 0 sin(jit) = U, cos(wt) .

We hence choose 6 = Uy, p=w, 6 =0.

And obtain
Ulx,t) = Upe ™ cos(wt — y)
with
Uy(z,t) = Upge ™ [ysin(wt — yz) — kcos(wt —yx)],
Uiz, t) = —wlpe ™ sin(wt — yz)

Upe(w,t) = Uge ™™ [—Zk'y sin(wt — yx) + (k* — 4?) cos(wt — ”yaj)} ,
Up(z,t) = —w?Use ™ cos(wt — yx).

Inserting these terms into the differential equation , using o = g =c¢ =1, yields
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!

Upe ™™ {cos(wt — ) [—w2 — (K* =% + 1} + sin(wt — yz) [2ky — Qw]} =0 Vz,t>0
This kann only hold Vz,t > 0 if

ky=w and —w? — k2 +~+2+1=0.

Inserting kv for w in the second equation we obtain

P2+ k2 =42 —1=(k2—1)(v2+1)=0 with yeR

— k? =1, where we assumed k € R".

Therefore with k=1 and v =w we have

U(x,t) = Upe ™ cos(w(t — x)).

b) Inserting the simple product ansatz U(z,t) = w(z)-v(t) into the differential equation
results in

w(x)v(t) — AFw’ (2)v(t) + (a + B)w(z)v(t) + apw(z)v(t) = 0.

Rearranging gives

0(t) + (a+ B)o(t) + apu(t) L
v(t) w(z)

Since the right-hand side depends only on z and the left-hand side only on ¢, both
sides must be constant. For example, with a fixed number A € R:

o(t) + (a+ B)o(t) + abot) _ ,w'(z) _
v(t) w(z)

—A.

We therefore obtain a system of two ordinary differential equations coupled via the
parameter \.

The differential equation for v is
(t) + (a+ B)o(t) + afu(t) = —v(t) <= 0+ (a+ p)o+ (af+A)v =0

This is an ordinary linear differential equation with constant coefficients. We therefore
calculate the zeros of the characteristic polynomial

a+f o+ [3)?
P(u) =1+ (a+B)u+(af+N) =0 < 1= — 5 + \/(4) — (af+ )
The general solution is v(t) = c1ef* + cpet?' or v(t) = et + cote!rt . This is only
periodic in t, if uq, po are purely imaginary numbers. The latter is only possible if
a+ 8 =0.But a and B are positive constants according to the task. Our product
ansatz therefore does not lead to a solution.
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