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Exercise 1:

Consider the following differential equations for u: D — R, D C R?,

)

b)

ug(x,t) — €uge(z,t) = 0, e€RT, (1)

wtan) + (“505) o )

ug(z,t) + (W)w — €uyy(z,t) = 0, (3)

(uz(x,y))Q - (uy(a:,y))2 —U(Jﬁ,y) = 0. (4)

Specify the order of each of the equations and decide whether it is a linear, semilinear, quasilinear or
(fully) non-linear equation.
Let ull and ul? be two different, non-constant solutions of the above differential equations.

For the equations (1) to (4), check whether @ := k- ul!l is also a solution for any k € C (or R). If
yes, check whether @ := ul'! +ul? is a solution of the differential equation, as well.

Note that in this case, every linear combination of (any number of) solutions of the differential equation is a
solution of the considered differential equation (induction argument).

Solutions to exercise 1:

a)

The differential equation (1) has order 2 and is linear.

The differential equation (2) has order 1 and is quasilinear: The coefficient in front of u, depends on
w:

w(x,t) + (W;))) = ut(x,t) + u(z,t) - ug(x,t) = 0.

The differential equation (3) has order 2 and is semilinear: The coefficient in front of wu,, does not
depend on wu or its derivatives.

The differential equation (4) has order 1 and is (fully) non-linear.

For the differential equation (1) we compute
= el = 0 = (k-ulY), — e(buM)pe = EK[(ul), — eull]] = 0.

If uw is a solution, then every multiple of u is also a solution.

Let u¥ and ul? be two different solutions of differential equation (1). Then the following applies
u,[gl] — el = 0 and u?] — eud = 0 and thus

() o) () = g (ol o)

xrx

= (ugll — euﬁ) + (u?] — euﬂ) = 0.
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Sums of solutions of differential equation (1) also solve differential equation (1).

For a solution ul!l of the differential equation (2), we use u7[51] =— (@) for @ :=k-ull and any
0 # k € C to compute ’

(), (5] -rote (4
() () e (1)

is not constant, the differential equation only holds for k =1, i.e. for @ = ul!l.

Since wull]

For the differential equation (3) and a solution u[' | we compute for @ := k- ull and any 0 # k € C

n
in a completely analogous way, except that here u,[gl] =— (%)m + euga]c )

~ (@)? - 1] (ku[l])2 1]
ut—i-(z z—eum—<k~u )t—i— 5 x—ekum
[11)2 [y 2
=—-k ((u2)) + keulll + &2 ((u2) ) — ekulll

1" is not constant, the differential equation only holds for k=1, i.e. for @ = ul!l.

Since ul

1]

For the differential equation (4) and a solution u*) we have

2 2
(u&” (m/)) - (uq[f] (w‘,y)) = ulll(z,y)
and thus for @ :=k-ull and any 0 #£k e C
2 2
(kul(z ) = (kull(,9)) — kulll(z,y)
2 2
= 12 (ul (@) = 8 (u @)kl w,y) = (8 = By (@, y)

Since w!! is not constant, and in particular should not vanish identically, the equation only applies

for k=1, ie. for a=ull.
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Exercise 2:
A simple traffic low model:
We consider a one-dimensional flow of vehicles along an infinitely long, single-lane road. In a so-called

macroscopic model, one does not consider individual vehicles, but the total flow of vehicles. For this purpose,
we introduce the following quantities:

u(x,t) = (length-)density of the vehicles at the point x at the time ¢
= vehicles/unit length at point x at the time ¢

v(z,t) = speed at the point = at the time ¢

u(z,t) -v(z, t) = flow

= amount of vehicles passing the point z at the time ¢ per unit time

Q

-

=
Il

a) Assume that there are no entrances or exits, no vehicles are disappearing, and no new vehicles are
appearing. Let N(¢,a,Aa) := number of vehicles on a spatial interval [a,a + Aa] at time t.

Then on the one hand it holds that
a+Aa
N(t,a,Aa) = / u(z,t) dx

and on the other hand it also holds

¢
N(t,a,Aa) — N(tg,a,Aa) = q(a,7) — q(a + Aa,7)dr .

to

Derive the so-called conservation equation for mass (number of vehicles)
U+ gy =0

from these observations.

Hints on how to proceed:

o Differentiate both formulas for N with respect to t. Please note that for the differentiation of
parameter-dependent integrals with sufficiently smooth f the Leibniz rule holds:

b(x)

Sty = [ T Gt V@) o) @) Fw o)

d b(x)
dz

a(x)

e Divide by Aa.
o Consider the limit Aa — 0.

b) We now assume in a first simple model that the speed increases in inverse proportion to the density
and that the density is positive

v(z,t) = ¢+ PR

What is the continuity equation (=conservation equation for mass)?

Solutions to exercise 2:
a+Aa
a) On the one hand, it holds N(t) = / u(z,t) dx

t
and on the other hand N(t)— N(t) = / q(a,7) — qla + Aa,7)dT .

to
Differentiating with respect to t gives

a a a+Aa
o N(t) = pn /a u(z,t)dx = q(a,t) — q(a + Aa,t).

With Aa approaching zero and with sufficient smoothness of the functions, we have
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—Uu

1 /a+Aa ) (.0)dz = lim ~qla+Aa,t) —q(a,t)
a

Aa—0 Aa ot Aa—0 Aa
0 0
_— — t) = — — a,t).
8t u(a7 ) 8& q( Y )
Since these considerations hold at every point, we obtain the continuity equation
U+ q, =0.
(0.0) = ¢+ e glat) = ¢ ula) + b
v(x,t) = ¢ x,t) = ¢ u(zx,
’ u(z, t) ¢
As continuity equation we have
Ju . ou 0
— +c¢c- — =0.
ot ox

The linear transport equation is thus obtained.

Note : This is a very simple, linearized model. For example, it allows for any density and any speed.
A somewhat more realistic problem would already produce shock and rarefaction waves (see later

exercises).
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