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Exercise 1:

Consider the following differential equations for u : D → R, D ⊂ R2 ,

ut(x, t) − ϵuxx(x, t) = 0, ϵ ∈ R+, (1)

ut(x, t) +
(

(u(x, t))2

2

)
x

= 0, (2)

ut(x, t) +
(

(u(x, t))2

2

)
x

− ϵuxx(x, t) = 0, (3)

(ux(x, y))2 − (uy(x, y))2 − u(x, y) = 0. (4)

a) Specify the order of each of the equations and decide whether it is a linear, semilinear, quasilinear or
(fully) non-linear equation.

b) Let u[1] and u[2] be two different, non-constant solutions of the above differential equations.
For the equations (1) to (4), check whether ũ := k · u[1] is also a solution for any k ∈ C (or R ). If
yes, check whether û := u[1] + u[2] is a solution of the differential equation, as well.
Note that in this case, every linear combination of (any number of) solutions of the differential equation is a
solution of the considered differential equation (induction argument).

Solutions to exercise 1:

a) The differential equation (1) has order 2 and is linear.
The differential equation (2) has order 1 and is quasilinear: The coefficient in front of ux depends on
u :

ut(x, t) +
(

(u(x, t))2

2

)
x

= ut(x, t) + u(x, t) · ux(x, t) = 0.

The differential equation (3) has order 2 and is semilinear: The coefficient in front of uxx does not
depend on u or its derivatives.
The differential equation (4) has order 1 and is (fully) non-linear.

b) For the differential equation (1) we compute

u
[1]
t − ϵu[1]

xx = 0 =⇒ (k · u[1])t − ϵ(ku[1])xx = k[(u[1])t − ϵu[1]
xx] = 0.

If u is a solution, then every multiple of u is also a solution.
Let u[1] and u[2] be two different solutions of differential equation (1). Then the following applies

u
[1]
t − ϵu

[1]
xx = 0 and u

[2]
t − ϵu

[2]
xx = 0 and thus(

u[1] + u[2]
)

t
− ϵ

(
u[1] + u[2]

)
xx

= u
[1]
t + u

[2]
t − ϵ

(
u[1]

xx + u[2]
xx

)
=
(

u
[1]
t − ϵu[1]

xx

)
+
(

u
[2]
t − ϵu[2]

xx

)
= 0.
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Sums of solutions of differential equation (1) also solve differential equation (1).

For a solution u[1] of the differential equation (2), we use u
[1]
t = −

(
(u[1])2

2

)
x

for ũ := k · u[1] and any
0 ̸= k ∈ C to compute

ũt +
(

(ũ)2

2

)
x

=
(

k · u[1]
)

t
+
(

(ku[1])2

2

)
x

= k · u
[1]
t +

(
k2(u[1])

2

2)
x

= k

(
− (u[1])2

2

)
x

+ k2

(
(u[1])

2

2)
x

= (k2 − k)
(

(u[1])2

2

)
x

.

Since u[1] is not constant, the differential equation only holds for k = 1 , i.e. for ũ = u[1] .

For the differential equation (3) and a solution u[1] , we compute for ũ := k · u[1] and any 0 ̸= k ∈ C
in a completely analogous way, except that here u

[1]
t = −

(
(u[1])2

2

)
x

+ ϵu
[1]
xx ,

ũt +
(

(ũ)2

2

)
x

− ϵũxx =
(

k · u[1]
)

t
+
(

(ku[1])2

2

)
x

− ϵku[1]
xx

= −k

(
(u[1])2

2

)
x

+ k ϵu[1]
xx + k2

(
(u[1])

2

2)
x

− ϵku[1]
xx

= (k2 − k)
(

(u[1])2

2

)
x

.

Since u[1] is not constant, the differential equation only holds for k = 1 , i.e. for ũ = u[1] .

For the differential equation (4) and a solution u[1] we have(
u

[1]
x (x, y)

)2
−
(

u
[1]
y (x, y)

)2
= u[1](x, y)

and thus for ũ := k · u[1] and any 0 ̸= k ∈ C(
ku[1]

x (x, y)
)2

−
(

ku[1]
y (x, y)

)2
− ku[1](x, y)

= k2
(

u[1]
x (x, y)

)2
− k2

(
u[1]

y (x, y)
)2

− ku[1](x, y) = (k2 − k)u[1](x, y)

Since u[1] is not constant, and in particular should not vanish identically, the equation only applies
for k = 1 , i.e. for ũ = u[1] .
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Exercise 2:
A simple traffic flow model:
We consider a one-dimensional flow of vehicles along an infinitely long, single-lane road. In a so-called
macroscopic model, one does not consider individual vehicles, but the total flow of vehicles. For this purpose,
we introduce the following quantities:
u(x, t) = (length-)density of the vehicles at the point x at the time t

= vehicles/unit length at point x at the time t

v(x, t) = speed at the point x at the time t

q(x, t) = u(x, t) · v(x, t) = flow
= amount of vehicles passing the point x at the time t per unit time

a) Assume that there are no entrances or exits, no vehicles are disappearing, and no new vehicles are
appearing. Let N(t, a, ∆a) := number of vehicles on a spatial interval [a, a + ∆a] at time t .
Then on the one hand it holds that

N(t, a, ∆a) =
∫ a+∆a

a

u(x, t) dx

and on the other hand it also holds

N(t, a, ∆a) − N(t0, a, ∆a) =
∫ t

t0

q(a, τ) − q(a + ∆a, τ)dτ .

Derive the so-called conservation equation for mass (number of vehicles)

ut + qx = 0

from these observations.
Hints on how to proceed:

• Differentiate both formulas for N with respect to t . Please note that for the differentiation of
parameter-dependent integrals with sufficiently smooth f the Leibniz rule holds:

d

dx

∫ b(x)

a(x)
f(x, t) dt =

∫ b(x)

a(x)

d

dx
f(x, t)dt + b′(x) f(x, b(x)) − a′(x) f(x, a(x))

• Divide by ∆a .
• Consider the limit ∆a → 0 .

b) We now assume in a first simple model that the speed increases in inverse proportion to the density
and that the density is positive

v(x, t) = c + k

u(x, t) .

What is the continuity equation (=conservation equation for mass)?

Solutions to exercise 2:

a) On the one hand, it holds N(t) =
∫ a+∆a

a

u(x, t) dx

and on the other hand N(t) − N(t0) =
∫ t

t0

q(a, τ) − q(a + ∆a, τ)dτ .

Differentiating with respect to t gives
∂

∂t
N(t) = ∂

∂t

∫ a+∆a

a

u(x, t) dx = q(a, t) − q(a + ∆a, t).

With ∆a approaching zero and with sufficient smoothness of the functions, we have
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lim
∆a→0

1
∆a

∫ a+∆a

a

∂

∂t
u(x, t) dx = lim

∆a→0
−q(a + ∆a, t) − q(a, t)

∆a

=⇒ ∂

∂t
u(a, t) = − ∂

∂a
q(a, t).

Since these considerations hold at every point, we obtain the continuity equation
ut + qx = 0 .

b)
v(x, t) = c + k

u(x, t) q(x, t) = c · u(x, t) + k

As continuity equation we have
∂u

∂t
+ c · ∂u

∂x
= 0.

The linear transport equation is thus obtained.
Note : This is a very simple, linearized model. For example, it allows for any density and any speed.
A somewhat more realistic problem would already produce shock and rarefaction waves (see later
exercises).
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