Prof. Dr. J. Struckmeier

Dr. H. P. Kiani

Differential Equations II for Engineering Students

Work sheet 4

Exercise 1: See Lecture pages 47-53

Consider the initial value problem

$$u_{xx} - 3u_{xt} - 4u_{tt} = 0$$
 for $x \in \mathbb{R}$, $t \in \mathbb{R}^+$
 $u(x,0) = 0$ for $x \in \mathbb{R}$,
 $u_t(x,0) = 2xe^{-x^2}$ for $x \in \mathbb{R}$.

- a) Rewrite the PDE in matrix form.
- b) Carry out the substitution $\alpha = x + \frac{t}{4}$, $\mu = x t$ and give the PDE in matrix notation for $v(\alpha, \mu) := u(x, t)$.
- c) Solve the PDE for u by first solving the PDE for v and transforming back afterwards.
- d) Determine the solution u for the initial value problem.

Exercise 2: Hint: See lecture page 60 and 65.

- a) Let α be a fixed real number from $\mathbb{R} \setminus \{0\}$. For which real-valued functions $g : \mathbb{R} \to \mathbb{R}$ are the following functions harmonic in \mathbb{R}^2 ?
 - i) $\tilde{u}(x,y) = \cos(\alpha x) \cdot g(y)$, ii) $u(x,y) = \frac{1}{2} \cdot (x^3 + g(x) \cdot y^2)$.
- b) Let $\Omega := \{(x,y)^T \in \mathbb{R}^2 : x^2 + y^2 < 16\}$ and u be the solution of the boundary value problem

$$\Delta u(x,y) = 0$$
 in Ω , $u(x,y) = \frac{2y^2}{x^2 + y^2}$ on $\partial \Omega$.

Determine the value of u in the origin.

- Use polar coordinates and the mean value property (lecture page 65).
- Note: $\sin^2(\varphi) = \frac{1 \cos(2\varphi)}{2}$.

Exercise 3: Hint: Lecture pages 61-64 and 69

a) Let

$$\Omega_2 = \{(x, y)^\top \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4\}.$$

Determine the solutions of

$$\begin{cases} \Delta u = 0 & \text{on} & \Omega_2, \\ u(x, y) = 1 & \text{for} & x^2 + y^2 = 1, \\ u(x, y) = 3 & \text{for} & x^2 + y^2 = 4. \end{cases}$$

Is the solution unique?

b) Let

$$\Omega_3 = \{(x, y, z)^\top \in \mathbb{R}^3 : 1 < x^2 + y^2 + z^2 < 4\}.$$

Determine the solutions of

$$\begin{cases} \Delta u = 0 & \text{on} & \Omega_3, \\ u(x, y, z) = 1 & \text{for} & x^2 + y^2 + z^2 = 1, \\ u(x, y, z) = 3 & \text{for} & x^2 + y^2 + z^2 = 4. \end{cases}$$

Is the solution unique?

Discussion: 09.06.- 13.06.2025