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Wave equation
Homogeneous initial value problem (IVP) in R (Cauchy problem)

U — Cuye =0 xeR, t>0 ¢>0,
u(x,0) = uo(x) = g(x), ue(x,0) = w(x) = h(x) x € R.

d’Alembert’s formula

u(x,t) = = [g(x+ct) + gl —et)] + 5 f”“ (¥) dv.

Derivation: By substitution of (compare Exercise 1, Sheet 4)
o = X+ ct, p = X — ct,
and
w(a(x, t), u(x,t)) = u(x,t)

the chain rule yields uy — Cuyy <= Way = 0 (Integrable form)




Homogeneous VP
Precisely: (wa(a,pt)), =0.
wo(a, 1) = d(a) = w(a, p) = () + V(p)

= u(x,t) = ®(x + ct) + ¥(x — ct)

Initial conditions:

u(x,0) = d(x)+V¥(x) = g(x), u(x,0) = c®’'(x)—cV¥'(x) = h(x)

Deriving the first equation yields
c®'(x) + V' (x) = cg'(x), u(x,0) = cd’'(x) — cV'(x) = h(x)

These are two equations for ®" and W’. Solving yields d'Alembert’s
formula.



Homogeneous VP
Proof left to the reader

Add the last two equations
1
2¢9'(x) = cg'(x) + h(x) = ¥'(x) = 58'(x) + *h( )

= 00) = 380+ B+ [ ho)do

V() = £~ 0(x) = 3800~ B o [ ho)do
s O(x 4 ct) = ; (x+ ct) + B+ o /mt (0)do

W(x — ct) = (x T / h(o)do



u(x,t)

Homogeneous VP
Proof continued

®(x + ct) + V(x — ct)

1 1 x—+ct 1
— t)+ — h(o)d
se0cta)t 5o [ hodde + e

X+ct
%(g(erct) +g(x—ct)) + 2%_(/

X0

x+ct

; (g(x +ct) + g(x —ct)) + % /X

—ct

x — ct)

1

2c

x—ct
/ h(o)do

h(o)do + /)j) t h(o)do)

h(o)do .



Wave equation
Inhomogeneous initial value problem (IVP) in R (Cauchy problem)

e — i = h(x,t) x€R, t>0 c>0,
i(x,0) = d(x,0) =0 x € R.

Solution:

1 t x—c(T—t)
i) = o /0 / h(w, 7) dwdr (1)

+c(r—t)



Inhomogeneous VP
Proof left to the reader

By Leibniz formula for parameter-dependent integrals

di’y Wy, 2)dz = [30) L F(y, 2)dz + b (y)F(y, b(y)) — @' (¥)F(y, ()

one computes

d x—c(T—t)
U(x,t) = ol s / /X+CT ) w,T) | dwdr
1 / /X C(T t) ( )
= h(w,7)dw | dr
2c 0 dX x+c(T—t)

:26/ [A(x — (7 — £),7) — h(x + c(r — 1), 7] dr

e (X, t) = — fo [ho(x —c(T —t),7) — hy(x + c(r — t), 7] dr



Inhomogeneous VP
Proof continued

d T—t)
ﬁt(X, t) = dr <2c / /x+c('r t) h(w’T)> dodr
) 1 / </x c(r—t) h(w,T)d“dT>

2c Jo dt x+c(r—t)

1 x—c(t—t)
+ (D) / h(w, t) dw
2c x+c(t—t)

:f/ [h(x — c(r = £),7) - € = h(x + c(r — t),7) - ()] dr

_%/0 [A(x — (7 = £),7) + h(x + c(r — 1), 7)] dr



Inhomogeneous VP
Proof continued

G, 1) :% /Ot & [hx — elr — 1),7) + hlx + clr — £).7)] dr

— (&) [h(x — c(t — t),7) + h(x + c(t — t),7)]

'\)n—t

C

= 5 {h(x, t) + h(x, t)

n / [ho(x — c(r — £),7) - ¢ + ho(x + c(r — £), 7)(—c)] dr}
0
= h(x,t) + % /0 [ho(x — (1 — t),7) — ho(x + c(r — t),7)] dr

Obviously it holds that @iy — c2iic = h(x,t). For the initial values one
gets

- 1 . 1
i(x,0) = 3% foo =0 and iy (x,0) = 5 foo cee = 0.



Inhomogeneous VP
Example

Uy — Quye = —4x xeR, t>0,
u(x,0) =1 ur(x,0) = cos(x) x € R.

Method: Solve two equations and combine. Precisely:

» Inhomogeneous DE with homogeneous initial values:

ﬁtt—gﬁxxz—4x X € R, t>0,
i(x,0) =0 i:(x,0) = 0 x € R.

» Homogeneous DE with inhomogeneous initial values:

e — 90 =0 x€R, t>0,
i(x,0) =1 0¢(x,0) = cos(x) x € R.

» Solution of original problem: v =i + .



Inhomogeneous VP

Example
Solution:
> ﬁtt - gﬁXX = —4x
i( fo f):LCC(E_T tt h(w, 7) dwdT
where h(x, t) = —4x hence h(w,7) = and ¢ =
Hence

i(x,t) =



Inhomogeneous VP
Example

> by — 90 = 0, i(x,0) =1, (0 (X 0) = cos(x).
]. X1 C
80 t) = 5 [g(c+ct) + glx— )] + 5o [75 () o

g(x) = w(x) = h(x) = w(x) =

» Claim: u = i+ i solves the original problem:

Ur — Uy = —4x xeR, t>0,
u(x,0) =1 ur(x,0) = cos(x) x € R.



Inhomogeneous VP
Example

Verification:

u(x,t) = —2xt*> + 1+ é [sin(x 4 3t) — sin(x — 3t)]

u(x,0) =
ur(x, t) =
uy(x,0) =
Uxx =

Upe =

U — 9uxx =



Example for Homework 1b

U =4y, forxeR, t>0,

U(X;O) = Uo(X) = g(X) — {(1) + COS(X) —|7T <x<m,
else,

u(x,0) = 0.

u(x,t) =

g(x+2t) =



Example for Homework 1b
continued

1+ cos(x—2t) —m<x—-2t<m < x€ [-7+2t,7+ 2t]
0 else,

g(x—2t) = {

For example for t = 1:




Example for Homework 1b
continued

for t =0,1,2,4,

05

-0.5

1: dashed, 2: dotted, 4: red



Homogeneous Wave Equation with homogeneous BV
Initial boundary value problem

Use — CPlge = 0 c>0,t>0,xc(0,L)
u(x,0) = up(x x € (0,L),
ue(x,0) = vo(x) x € (0,L),
u(0,t) =0 t>0,
u(L,t) =0 t>0

Product ansatz

> Ansatz u(x,t) = q(t) - p(x)
yields  p(x) - §(t) = c*p"(x) - q(t)



Homogeneous Wave Equation with homogeneous BVs
p// = —\p

By the homogeneous boundary values we get, exactly as for the heat
equation,

u(0,t) =p(0)g(t)=0 Vt>0 = p(0)=0VvVg=0

u(L,t)=p(L)g(t)=0 Vt>0 = p(l)=0V g=0.

the boundary value problem:

P/(x) = —Ap(x),  p(0) = p(L) =0

The only solutions that are nontrivial are (compare AE 5).

pr(x) = sin(kwx) w=mn/L, M= (%)2 = (kw)?, k€N




Homogeneous Wave Equation with homogeneous BVs
qg= —Ac%q

For g we have the following DE this time:

G= —\c?q = — (ckw)?q

which gives

gk (t) = Ag cos(ckwt) + By sin(ckwt)

Hence  wuk(x,t) := qk(t) - pk(x), k € N solves the DE and fulfills
the boundary values.

DE is homogeneous and linear, homogeneous bvs — superposition
allowed

] u(x, t) = 37, (Ay cos(ckwt) + By sin(ckwt))-sin(kwx)‘

solves the DE and fulfills the boundary values.



Homogeneous Wave Equation with homogeneous BVs
Initial conditions

With u(x,t) = Y7 _; (Axcos(ckwt) + By sin(ckwt)) - sin(kwx)
the initial values

n

u(x,0) = Z (Ak cos(0) + By sin(0)) - sin(kwx) = wp(x) x €0, L]
k=1

have to be fulfilled.
For n — oo we get

u(x,0) = Z Ak sin(kwx) = up(x), x € [0, L].

Ay are the Fourier coefficients of the odd 2L-periodic continuation of wug
if the initial data is smooth



Homogeneous Wave Equation with homogeneous BVs
Initial conditions

The second initial condition is for
oo

u(x, t) = Z (A cos(ckwt) + By sin(ckwt)) - sin(kwx)
k=1

u(x, t) =

ur(x,0) = Z By - (ckw) sin(kwx) = vo(x).

k=1
With the Fourier coefficients of the odd 2L-periodic continuation of v

2 [t . [ kma
bx = 7 /0 vo(a) sin <L) da

it needs to hold that

Z B - 7rsm Z bksm(—x

rl



Homogeneous Wave Equation with homogeneous BVs
Continued

Therewith we get the solution

u(x,t) = >3, (Axcos(ckwt) + By sin(ckwt)) - sin(kwx) w=7T




Homogeneous Wave Equation with homogeneous BVs
Example

utt_uXX:() X€(0,g),t>0
X XE[O z
u(x,0) = q _
z—x xel[f, 5
ue(x,0) = 2sin(4x) x € [O,%],
s
u(0,t) = u(E,t) =0 t>0,

Here it holds: L= 75, w=7=

L/ =2, c=1
u(x,t) = Y72 [Ak cos(ckwt) + Bi sin((ckwt)] sin(kwx),
As above:

X x € [0, 7],
u(x,0) = 377, Axsin(kwx) L {ﬂ 0%



Homogeneous Wave Equation with homogeneous BVs
Example continued

The second initial condition yields

ur(x,0) = Z By - (ckw) sin(kwx) = 2sin(4x)
k=1
withw =2, c=1.

Obviously:

The first initial condition requires

ad X x € [0, 7],
u(x,0) = Z Ak - sin(2kx) = { 0.5]
e~ z—x xel 5



Homogeneous Wave Equation with homogeneous BVs
Example continued
For Ax we compute

L
Ay = i / u(x,0) - sin (2kx) dx
0

4 ™ 4 ™
- /4 xsin(2kx)dx + 7/2 (5 = x)sin(2kx)dx
0 mJz

™

4 cos(2kx) \, = T cos(2kx)
Ay [t

_ / (-1) (-Cosgikx)) dx}

T



Homogeneous Wave Equation with homogeneous BVs
Example continued

Hence we get

u(x,t) = Z [Ak cos(ckwt) + By sin((ckwt)] sin(kwx)
k=1

+ B;sin(2cwt) sin(2wx)

[i () conekorysint

1
2

+ % sin(4t) sin(4x)

oo

n(4t) sin(4x) Z < )cos(2kt) sin(2kx)-

k=



Homogeneous Wave Equation with inhomogeneous BVs

Uy — CPuy =0 c>0,xe(0,L),t>0
u(x,0) = wup(x) x € [0, 1],
ur(x,0) = wo(x) x € [0, 1],
u(0,t) = h(t) t>0,
u(L,t) = g(t) t>0,

Proceed as in auditorium exercise 5:

v(x, ) = ulx, t) = h(t) = T (g(t) = h(t)
yields v(0,t) = v(L,t) = 0.

New DE for v:

u(x, £) = v(x, £) + h(t) + 7 (g() = h(£)
u(x, t) =

Usx (X, 1) 1= Vax(X, 1)



Homogeneous Wave Equation with inhomogeneous BVs
New problem

The new problem consists of: in general, inhomogeneous DE,
inhomogeneous initial values but homogeneous boundary values

vie & h(1) + T ((2) = h(1)) = v =0

v(x,0) = u(x,0) = h(0) — 7 (g(0) — h(0)) =: vo(x).
(x,0) = ur(x,0) = h(0) = T (£(0) — h(0)) =: Fo(x).
v(0,t) =0, v(L,t)=0.



Inhomogeneous Wave Equation with inhomogeneous BVs

Example
Uy = By c>0,t>0,x€(0,L)
u(x,0) = x —sin(nx) x € (0,L),
u(x,0) = sin(27x) x € (0,1L),
u(0,t) =0 t>0,
u(L,t) =1 t>0

Transform the equation into an initial boundary value problem with
homogeneous boundary values by introducing an appropriate function v.

Solve the the IBVP for v

Give the solution of the IBVP for u.
1. Homogenization
v(x, t) = u(x,t) = h(t) = 7 (8(t) — h(t))
= u(x,t) —0— > (1-0) = u(x, t) — x-

1
Vix = Vit =



Inhomogeneous Wave Equation with inhomogeneous BVs

Example
2. New Problem
Vit = dvi 0<x<1, teR",
v(x,0) = u(x,0) — x = —sin(nx) 0<x<1,
ve(x,0) = u(x,0) = sin(27x) 0<x<1,
v(0,t) = u(0,t)—0=0 t>0,
v(l,t) = u(l,t)—1=0 t>0.

3. Solution of IBVP for v:
Usec=2, L=1

v(x, t) = Z {Ak cos(CkTW t) + Bk sin(CkT7r t) sin(k—L7r x)
k=1



Inhomogeneous Wave Equation with inhomogeneous BVs
Example

3. continued
v(x,0) =

oo
ve(x, t) = Z [—2km Ak sin(2km t) + 2km By cos(2km t)] sin(kmx)
k=1

ve(x,0) =

and therefore
v(x,t) = Ajcos(2-1-m-t)sin(l-mx)+Bxsin(2-2-7-t)sin(2-7-x)
hence

v(x,t) = % sin(4nt) sin(2wx) — cos(2mt) sin(7x)



Inhomogeneous Wave Equation with inhomogeneous BVs
Example

4. Solution of IBVP for u:

The solution of the original problem is

U(x,t) = v(x, t)+x = x+ %sin(47rt) sin(27x) — cos(2rt) sin(x)



Inhomogeneous Wave Equation with homogeneous BVs
for completeness, left to the reader

U — CPu = h(x, t) c>0,xe(0,L),t>0
u(x,0) = up(x) x € (0,L1),

ur(x,0) = vo(x) x € (0,L1),

u(0,t) =0 t>0,

u(L,t) =0 t>0,

_ T
Letw—f

‘ u(x,t) = Ziil qk(t) sin(kwx) ‘




Inhomogeneous Wave Equation with homogeneous BVs

Plugging this into the PDE gives boundary value problems for
ordinary differential equations of second order, if the series
converge uniformely:

G (t) + 2k2W?qi(t) = ck(t), qk(0) = ax, q,(0) = by

where: .
ax = — / up(x) sin(kwx) dx
L Jo

2 L
by = 7 / vo(x) sin(kwx) dx
0

L
c(t) = % /0 h(x, t) sin(kwx) dx

Fourier coefficients might be computed by comparing coefficients!
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