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Initial Boundary Value Problem for the Heat Equation

We want to solve

ut − cuxx = h(x , t), c > 0, t > 0, x ∈ (a, b), here (0, L),

u(x , 0) = u0(x), x ∈ (a, b),

u(a, t) = f (t), t > 0,

u(b, t) = g(t), t > 0.

c: Diffusion coefficient/ heat conduction



Homogeneous Heat Equation
with homogeneous BV and inhomogeneous IV

ṽt − cṽxx = 0, c > 0, t > 0, x ∈ (0, L), L > 0,

ṽ(x , 0) = v0(x), x ∈ (0, L),

ṽ(0, t) = ṽ(L, t) = 0, t > 0.

v0 is nonzero, that is, ṽ is nonzero!

▶ Ansatz: ṽ(x , t) = q(t) · p(x)
▶ Insertion into PDE gives q̇(t) · p(x) − c · q(t) · p′′(x) = 0

▶ Reorder:

q̇(t)

q(t)
= c

p′′(x)

p(x)
=



Homogeneous Heat Equation

First: p′′(x) = −λ · p(x) (compare lecture notes pages 85-88)

ṽ(0, t) = q(t) · p(0) !
= 0 =⇒ p(0) =

ṽ(L, t) = q(t) · p(L) !
= 0 =⇒ p(L) =

DE: p′′ + λ · p = 0 −→ Characteristic polynomial: µ2 + λ = 0

µ = ±
√
−λ −→ general solution ae

√
−λx + be−

√
−λx

Except for double roots! Here λ = 0

λ = 0 =⇒ p(x) = a0e
√
−0x + b0xe

√
−0x = a0 + b0x ,

p(0) = 0 =⇒ a0 = 0

p(L) = 0 =⇒ b0 · L = 0



Homogeneous Heat Equation

λ < 0 =⇒ p(x) = ae
√
−λx + be−

√
−λx

p(0) = 0 =⇒ ae0 + be0 = 0

p(L) = 0 =⇒ ae
√
−λL + be−

√
−λL = 0

λ > 0 =⇒ p(x) = âe
√
−λx + b̂e−

√
−λx

p(x) = âe i
√
λx + b̂e−i

√
λx

Real representation: p(x) = a cos(
√
λ x) + b sin(

√
λ x)

p(0) = 0 =⇒ a cos(0) + b sin(0) = a = 0

p(L) = 0 =⇒ b sin(
√
λ L) = 0

So nontrivial solutions exist only for:

λn =
( nπ

L

)2
= n2ω2, n ∈ N, ω =

π

L



Homogeneous Heat Equation

λn =
( nπ

L

)2
= n2ω2, n ∈ N, ω =

π

L

Corresponding solutions: pn(x) = sin (nωx) = sin
( nπ

L
x
)

We solve the second DE with these λ−values

q̇n(t)

qn(t)
= c

p′′n (x)

pn(x)
= − c · λn ⇐⇒ q̇n(t) = − cλnqn(t)

⇒ qn(t) = e−cλnt = e−cω2n2t

Each function ṽn(t) = pn(x) · qn(t) = sin (nωx) e−cω2n2t

fulfills the homogeneous DE and the homogeneous boundary values!



Homogeneous Heat Equation

Each linear combination αnṽn + αmṽm fulfills the homogeneous DE and
the homogeneous boundary values.

Proof: On the boundary it holds
(αnṽn + αmṽm) (0) = αn · ṽn(0) + αm · ṽm(0) =
(αnṽn + αmṽm) (L) = αn · ṽn(L) + αm · ṽm(L) =

Differential equation:
(αnṽn + αmṽm)t − c (αnṽn + αmṽm)xx

= αn · (ṽn)t + αm · (ṽm)t − cαn(ṽn)xx − cαm(ṽm)xx

= αn ((ṽn)t − c(ṽn)xx) + αm ((ṽm)t − c(ṽm)xx)

Question: Are linear combinations of solutions of inhomogeneous
differential equations and/or inhomogeneous boundary values also
solutions?



Homogeneous Heat Equation

Each finite linear combination

ṽ(x , t) =
∑m

n=1 αne
−cω2n2t sin (nωx) ω = π

L

solves the DE and fulfills the boundary values.

Also the initial condition has to be fulfilled:

ṽ(x , 0) =
m∑

n=1

αne
−cω2n2·0 sin (nωx)

!
= v0(x) x ∈ (0, L)

So ṽ(x , 0) =
∑m

n=1 αn · sin (nωx)
!
= v0(x) x ∈ (0, L)

This only holds for particular v0.

Idea for arbitrary v0: Consider the series (∞ instead of m) and choose:
αn as Fourier coefficients of the odd, 2L-periodic continuation of v0. (See
next auditorium exercise). Here: particular v0.



Inhomogeneous Heat Equation
with inhomogeneous BV and IV

ut − cuxx = h(x , t), c > 0, t > 0, x ∈ (a, b), here (0, L),

u(x , 0) = u0(x), x ∈ (a, b),

u(a, t) = f (t), t > 0,

u(b, t) = g(t), t > 0

Method:

1. Homogenization (of the boundary values)

2. Solving the homogenized problem

3. Determine original solution



Inhomogeneous Heat Equation
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Inhomogeneous Heat Equation
1. Homogenization of the boundary values

Homogenization

v(x , t) := u(x , t)−
[
f (t) +

x

L
(g(t)− f (t))

]
v(0, t) = u(0, t)− f (t)− 0

L
(g(t)− f (t))

v(L, t) = u(L, t)− f (t)− L

L
(g(t)− f (t))

New DE for v :

u(x , t) := v(x , t) + f (t) +
x

L
(g(t)− f (t))

ut(x , t) = vt(x , t) + ḟ (t) +
x

L
(ġ(t)− ḟ (t))

ux(x , t) = vx(x , t) + 0 +
1

L
(g(t)− f (t))

uxx(x , t) = vxx(x , t)



Inhomogeneous Heat Equation
1. Homogenization of the boundary values

Homogenized problem

vt − cvxx = h̃(x , t), c > 0, t > 0, x ∈ (0, L),

v(x , 0) = v0(x), x ∈ (0, L),

v(0, t) = v(L, t) = 0, t > 0

with
h̃(x , t) = h(x , t)− f ′(t)− x

L
(g ′(t)− f ′(t))

and
v(x , 0) = u(x , 0)− f (0)− x

L
(g(0)− f (0)) =: v0(x).

This problem consists, in general, of an inhomogeneous DE, inhomogeneous
initial values and homogeneous boundary values.



Inhomogeneous Heat Equation
2. Solve Homogenized Problem

vt − cvxx = h̃(x , t), c > 0, t > 0, x ∈ (0, L),

v(x , 0) = v0(x), x ∈ (0, L),

v(0, t) = v(L, t) = 0, t > 0

homogeneous boundary values are fulfilled by:

pn(x) = sin (nωx) = sin
( nπ

L
x
)
, n ∈ N

Ansatz: v(x , t) =
∑m

n=1 an(t) sin (nωx)

Plug into DE vt − cvxx = h̃(x , t) :

m∑
n=1

[ȧn(t) + cn2ω2an(t)] sin (nωx) = h̃(x , t)



Inhomogeneous Heat Equation
2. Solve Homogenized Problem

The solution has to fulfill the initial value as well

v(x , 0) =
m∑

n=1

an(0) sin (nωx) = v0(x)

Ideas for arbitrary h̃, v0:
Consider the series (∞ instead of m) and replace the right handside by the
Fourierseries of the odd, 2L-periodic continuation of h̃ or v0, respectively. We
obtain an initial value problem with ordinary DEs for an.

Computation of Fourier coefficients follows in the next auditorium exercise.
Here: particular choices of h̃, v0.



Inhomogeneous Heat Equation
3. Determine original solution

u(x , t) = v(x , t) + f (t) +
x

L
(g(t)− f (t))



Inhomogeneous Heat Equation
Example

ut − uxx =
x − π

π (t + 1)2
+ 4 sin(2x) 0 < x < π, t ∈ R+,

u(x , 0) = 1 − x

π
+ sin(6x) 0 < x < π ,

u(0, t) =
1

t + 1
t > 0,

u(π, t) = 0 t > 0

1. Homogenization of boundary values

v(x , t):=u(x , t)−
[
f (t)+ x

L
(g(t)−f (t))

]



Inhomogeneous Heat Equation
Example

New DE for v(x , t) = u(x , t) +
1

t + 1

( x

π
− 1

)
DE for u: ut − uxx =

x − π

π (t + 1)2
+ 4 sin(2x)

vt(x , t) =

ut − uxx =

vt − vxx =

v(x , 0) =

v(0, t) = u(0, t)− 1

t + 1
=

v(π, t) = u(π, t) +
1

t + 1

(π
π
− 1

)
= 0.



Inhomogeneous Heat Equation
Example

2. vt − vxx = 4 sin(2x), x ∈ (0, π), t > 0

v(x , 0) = sin(6x) x ∈ [0, π]

v(0, t) = v(π, t) = 0, t ≥ 0

Ansatz:

v(x , t) =
m∑

n=1

an(t) sin (nωx)

Plugging this into the PDE vt − cvxx = h̃(x , t), yields

m∑
n=1

[ȧn(t) + cn2ω2an(t)] sin (nωx) = h̃(x , t)



Inhomogeneous Heat Equation
Example

2. continued
m∑

n=1

[ȧn(t) + cn2ω2an(t)] sin (nωx) = h̃(x , t)

where

c = 1, h̃(x , t) = 4 sin(2x), L = π so ω = 1.

So we have

m∑
n=1

[ȧn(t) + n2an(t)] sin (nx) = 4 sin(2x)

Comparison of coefficients yields the ordinary differential equations



Inhomogeneous Heat Equation
Example

2. continued
The solution has to fulfill the initial values

v(x , 0) =
m∑

n=1

an(0) sin (nx) = v0(x) = sin(6x)

Comparison of coefficients yields the initial values for our differential
equations

In total we get the following initial value problems

ȧn(t) + n2an(t) = 0, an(0) = 0 ∀n /∈ {2, 6}



Inhomogeneous Heat Equation
Example

2. continued
With solutions

an(t) =

and

ȧ6(t) + 62a6(t) = 0, a6(0) = 1

ȧ2(t) + 22a2(t) = 4, a2(0) = 0

Solution: v(x , t) =



Inhomogeneous Heat Equation
Example

3.
u(x , t) = v(x , t) + f (t) +

x

L
(g(t)− f (t))

where f (t) = 1
1+t

, g(t) = 0, L = π.



Inhomogeneous Heat Equation
Hint for Homework 2a

q̇(t)

q(t)
= c

p′′(x)

p(x)
= µ

So q̇(t) = µq(t)

x− part: linear, exponential or periodic.

Follow pages 5-9 with
p′(0) = p′(L) = 0 instead of p(0) = p(L) = 0.

Use the series instead of the sum, that is ∞ instead of m.



Laplace Equation on Circles, Arcs, inside and outside of
Disks...

Laplace operator in polar coordinates:

∆u = 0
r ̸=0⇐⇒ urr + 1

r ur +
1
r2 uϕϕ = 0 .

For rotationally symmetric data: u(r , ϕ) = w(r) it holds uϕϕ = 0 .

We need to solve: r2urr + rur = 0

Let g := w ′. Then we need to solve: rg ′(r) + g(r) = 0

dg

dr
= −g

r
⇐⇒ dg

g
= −dr

r

ln(|g |) = − ln(r) + k ⇐⇒ e ln(|g |) = e− ln(r)+k = e− ln(r) · ek

w ′ = g = α · 1
r
=⇒ w(r) = α · ln(r) + β

Compare representation in terms of the fundamental solution from last auditorium exercise



Not Rotationally Symmetric Data

▶ Ansatz: u(r , ϕ) = w(r) · v(ϕ)

which should satisfy: r2urr + rur + uϕϕ = 0 .

▶ New DE: r2w ′′ · v + rw ′ · v + w · v ′′ = 0

▶ Order with respect to v and w :

v(r2w ′′ + rw ′) = −w · v ′′ =⇒ r2w ′′ + rw ′

w
= − v ′′

v
= λ.

▶ System of ODEs:

v ′′(ϕ) = −λv(ϕ) , r2w ′′(r) + rw ′(r) − λw = 0



Not Rotationally Symmetric Data
Analysis of v ′′(ϕ) = −λv(ϕ)

▶ Solutions see above

▶ λ = 0: linear function

▶ λ < 0: real exp-functions

▶ λ > 0: Cos- and Sin functions

v should be 2π−periodic such that it consists of cos(kϕ), sin(kϕ) with
corresponding λk = k2 and

vk(ϕ) = ak cos(kϕ) + bk sin(kϕ) , k ∈ N, v0(ϕ) = a0

According to the system, we get for v = vk the ODE for w = wk

r2w ′′(r) + rw ′(r) − λkw = r2w ′′(r) + rw ′(r) − k2w = 0.



Not Rotationally Symmetric Data
Analysis of r2w ′′(r) + rw ′(r) − k2w = 0

k = 0: ▶ r2w ′′(r) + rw ′(r) = 0
▶ as above with g = w ′

▶ rg ′(r) + g(r) = 0 ⇐⇒ g ′

g
= −1

r

▶ w ′ = g =
d0
r

=⇒ w0 = c0 + d0 ln(r) .

k ̸= 0: ▶ Euler’s DE: Substitution r = et or ansatz w(r) = rγ

r2w ′′(r) + rw ′(r) − k2w = 0

⇐⇒− k2 · rγ + r · γ · rγ−1 + r2 · γ · (γ − 1) · rγ−2 = 0

⇐⇒rγ
(
−k2 + γ + γ2 − γ

)
= 0

⇐⇒γ = ±k

▶ Thus, wk(r) = ck r
−k + dk r

k



Not Rotationally Symmetric Data

Every function wk · vk solves the differential equation. Since the DE is linear,
every linear combination is a solution as well:

u(r , ϕ) = c0 + d0 ln(r) +
n∑

k=1

(ck r
−k + dk r

k)(ak cos(kϕ) + bk sin(kϕ))

Without deeper analysis of the convergence, we write

u(r , ϕ) = c0 + d0 ln(r) +
∑∞

k=1 (ck r
−k + dk r

k)(ak cos(kϕ) + bk sin(kϕ))

Depending on the region, we need to restrict to bounded summands, see below.



Laplace equation on unbounded sets

Example

▶ ∆u = 0, for x2 + y 2 > 16, u(x , y) = 1+ xy − 2y 2, on x2 + y 2 = 16.

▶ General solution:

u(r , ϕ) = c0 + d0 ln(r) +
∞∑
k=1

(ck r
−k + dk r

k)(ak cos(kϕ) + bk sin(kϕ))

▶ Ansatz for x2 + y 2 > R2:

▶ Since the solution should be bounded: dk = 0 , ∀k.
▶ It remains

u(r , ϕ) = c0 +
∞∑
k=1

ck r
−k(ak cos(kϕ) + bk sin(kϕ))



Laplace equation on unbounded sets

▶ Ansatz: u(r , ϕ) =
a0
2

+
∑∞

k=1 r−k (ak cos(kϕ) + bk sin(kϕ))

▶ Boundary conditions: u(R, ϕ) = uR(ϕ), thus

u(R, ϕ) =
a0
2

+
∞∑
k=1

R−k (ak cos(kϕ) + bk sin(kϕ)) = uR(ϕ)

▶ Develop uR with a Fourier series

uR(ϕ) =
A0

2
+

∞∑
k=1

Ak cos(kϕ) + Bk sin(kϕ)

Ak =
1

π

∫ 2π

0

uR(ϕ) cos(kϕ) dϕ, Bk =
1

π

∫ 2π

0

uR(ϕ) sin(kϕ) dϕ

▶ Compare coefficients:

R−kak = Ak ⇐⇒ ak = Rk · Ak , and analogously bk = Rk · Bk

such that we obtain the solution for the complement

u(r , ϕ) =
A0

2
+

∞∑
k=1

(
R

r

)k

(Ak cos(kϕ) + Bk sin(kϕ))

Computation of Fourier coefficients: next auditorium exercise



Laplace equation on unbounded sets
Example

u(r , ϕ) =
A0

2
+

∞∑
k=1

(
R

r

)k

(Ak cos(kϕ) + Bk sin(kϕ))

▶ For our example, we have the boundary values
u(x , y) = 1 + xy − 2y2, on x2 + y2 = 16

▶ With x = r cos(ϕ), y = r sin(ϕ), r2 = x2 + y2 this is

u(4, ϕ) = 1 + 4 cos(ϕ) · 4 sin(ϕ)− 32 sin2(ϕ)

▶ Use sin(2ϕ) = 2 cos(ϕ) · sin(ϕ), cos(2ϕ) = 1− 2 sin2(ϕ)

▶ Then,

u(4, ϕ)= uR(ϕ) = 1 + 8 sin(2ϕ)− 16 + 16 cos(2ϕ)

!
=

A0

2
+

∞∑
k=1

(
4

4

)k

(Ak cos(kϕ) + Bk sin(kϕ))



Laplace equation on unbounded sets
Example

u(4, ϕ) = uR(ϕ) = 1 + 8 sin(2ϕ)− 16 + 16 cos(2ϕ)

!
=

A0

2
+

∞∑
k=1

(
4

4

)k

(Ak cos(kϕ) + Bk sin(kϕ))

▶ The Fourier coefficients of u0 are

A0

2
= , A2 = , B2 = , Ak = Bk = else

(In general one has to determine the Fourier coefficients by
integrals.)

▶ With this we get the solution

u(r , ϕ) =



Laplace equation on unbounded sets
Example

▶ We can reformulate it as a solution depending on x , y ∈ R2

(Cartesian coordinates). Use cos(ϕ) = x
r , sin(ϕ) =

y
r .

▶

u(r , ϕ) = −15 +

(
4

r

)2

(16 cos(2ϕ) + 8 sin(2ϕ))

▶ cos(2ϕ) = cos2(ϕ)− sin2(ϕ) =

▶ sin(2ϕ) = 2 cos(ϕ) · sin(ϕ) =

▶ u(r , ϕ) = −15 +

(
4

r

)2

(16 cos(2ϕ) + 8 sin(2ϕ))

▶ u(x , y) = −15 +

(
4√

x2 + y2

)2 (
16

x2 − y2 + xy

x2 + y2

)



Summary

▶ General ansatz for (complement resp. sections of) circles or rings:

u(r , ϕ) = c0 + d0 ln(r) +
∑∞

k=1 (ck r
−k + dk r

k)(ak cos(kϕ) + bk sin(kϕ))

▶ For getting bounded solutions one sets

▶ On balls with BV u(R, ϕ) = uR(ϕ): ck = 0, ∀k ∈ N and d0 = 0:

u(r , ϕ) =
A0

2
+

∞∑
k=1

( r

R

)k

(Ak cos(kϕ) + Bk sin(kϕ))

▶ On complements of balls with BV u(R, ϕ) = uR(ϕ): dk = 0 and:

u(r , ϕ) =
A0

2
+

∞∑
k=1

(
R

r

)k

(Ak cos(kϕ) + Bk sin(kϕ))

▶ In rings with u(R1, ϕ) = u1(ϕ), u(R2, ϕ) = u2(ϕ): Use complete
ansatz. Determine coefficients via two boundary conditions.

▶ In segments of a ring: If there are boundary values ̸= 0 on more
than one boundary part, one may need to disassemble the region. It
may also be necessary to adjust the ansatz.
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