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Overview

Second Order Differential Equations

Harmonic Functions

Laplace Equation



Linear Second Order Differential Equations
Here just two variables. General case: see lecture notes.

’ a(x, t)usxx + 2b(x, t)ust + c(x, t)up = h(x, t, u, ux, uz) ‘

Classification:

D(x,t) = a(x, t)c(x, t) — (b(x,t))? < 0 : hyperbolic,
D(x,t) = a(x, t)c(x,t) — (b(x,t))? = 0 : parabolic,
D(x,t) = a(x, t)c(x,t) — (b(x,t))? > 0 : elliptic.

Different methods are suitable, different initial or boundary
conditions are required for reasonable * problems.

* ) Reasonable means well defined: There exists a unique solution,
depending continuously on the initial and/or boundary data.



Examples
Compare HW1

Determine the type of the following differential equations:

1. UXX+6uxy+9uyy+yUX—XUy =0

2. (2x% — 1) txx — 4xy Uxy + (2y? — 1) uyy + x Uy = cos(x)



Linear PDE of second order with constant coefficients
(derivatives of second order)

’ 11 Usx + 2a12Ux + o Uy + bl(X, t)UX + bz(X, t)uf + C(X, t)u = /’I(X7 f) ‘

Diagonal form: No mixed derivatives of second order

Normal form: No mixed derivatives of second order and
coefficients of second derivatives take values € {—1,0,1}.

Integrable form: Only mixed derivatives of second order



Linear PDE of second order with constant coefficients
(derivatives of second order)

’ 11 Usx + 2a12Ux + o Uy + bl(X, t)UX + bz(X, t)uf + C(X, t)u = /’I(X7 f) ‘

Diagonal form: No mixed derivatives of second order

Normal form: No mixed derivatives of second order and
coefficients of second derivatives take values € {—1,0,1}.

Integrable form: Only mixed derivatives of second order

hyperbolic: Usex — U = G(X, t, u, Uy, Ut)
or ux = G(x, t,u, uy, uy)
parabolic: Usx = G(x, t, u, uy, uz)
elliptic: Usx + U = G(X, t, u, Uy, uy)



Goal: Derive diagonal/normal/integrable form

We introduce new variables n=n(x,t), 7 =71(x,t),
and a function: v(n(x,t), 7(x, t)) = u(x,t)

Regularity condition: 7,7 — n;7x # 0.



Goal: Derive diagonal/normal/integrable form

We introduce new variables n=n(x,t), 7 =71(x,t),
and a function: v(n(x,t), 7(x, t)) = u(x,t)
Regularity condition: 7,7 — n:7 # 0.
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Goal: Derive diagonal/normal/integrable form

We introduce new variables n=n(x,t), 7 =71(x,t),
and a function: v(n(x,t), 7(x, t)) = u(x,t)
Regularity condition: 7,7 — n:7 # 0.

We use the chain rule to compute the derivatives:
Ux = (V(U(X7 t), T(X7 t)))x =

Ut = Vyp =Mt + Ve - T,
Uy =
Vi - (77X)2 + 2Vyr - kT + Vir - (TX)2 + (Vighx + VorTx)
Uxt = Vpp * NxNt + Vipr - (7_t77x + Txnt) + Vir s TeTx + (Vnan + VTTXt) R

gt = Vi - (16)° 4 2vr - 0eTe + Ver - (70)? A+ (Ve + veTae) -



We plug this in and obtain another differential equation

AVyy + 2Bvyr + Cvrp = 77(7), T, V, Vy, Vr)

Question: How to choose 7, 77

» Normal form: see lecture notes. Here: a short sketch of the
method without example.

» Example for integrable form follows.



Example for Exercise 1 (Work sheet): Transform to
integrable form

For ust + (@ + b)uex + abuy = 0
substitute o = x — bt, u = x — at.



Example for Exercise 1 (Work sheet): Transform to
integrable form

For ust + (@ + b)uex + abuy = 0
substitute o = x — bt, u = x — at.

Example:

14UXX + 9UXt + Ut = 0 for x S ]R,, t e ]R,+
u(x,0) = up(x), forxeR z.B.: up(x) = x + sin(x),
ur(x,0) = w(x), forxeR z.B.:vp(x) = —7 — 2 cos(x).

a=x—Tt,u =x—2t
u(x, t) = v(a(x, t), p(x, t))

Formulas given on page 8 with «, y instead of n and 7



Uy = (V(Oz(X, t),,u(x, t)))x =



Ux

ut

UXX

Uxt

Utt

(v(alx, t), u(x, 1)), =

Vo o O 4=V - it

Vaa (O‘X)z + 2Vap - Ouehx + Vi - (qu)z + (Voo + Viubixx)

Vaa * OxQi¢ + Vg - (:U’tax + ant) + Vi - Bepix + (Vaaxt + Vuﬂxt)7

Vaa (Oét)2 + 2oy - fir + Vg - (Mt)2 + (Vo + Vupiet) -



Ux = (V(a(Xv t)?:U'(X7 t)))x =

Ut = Vo - O + vy - iy
Uxx = Voo * (Oéx)2 + 2Vo¢u * Qix hx + Vuu . (,U/x)2 + (Vaaxx + V,U,,U’XX) )

Uxt = Vaa * QxQt + Vg - (e + pixut) + Vi - pepix + (VaQixe + Vifixe),

Utt = Voo * (Oét)2 + 2oy - fir + Vg - (Mt)2 + (Vo + Vupiet) -

Plug into differential equation 14uy 4+ uy: + uge = 0



Ux = (V(a(Xv t)?:U'(X7 t)))x =

Ut = Vo - O + vy - iy
Uxx = Voo * (Oéx)2 + 2Vo¢u * Qix hx + Vuu . (,U/x)2 + (Vaaxx + V,U,,U’XX) )

Uxt = Vaa * QxQt + Vg - (e + pixut) + Vi - pepix + (VaQixe + Vifixe),

Utt = Voo * (Oét)2 + 2oy - fir + Vg - (Mt)2 + (Vo + Vupiet) -

Plug into differential equation 14uy 4+ uy: + uge = 0

New differential equation v,, = 0.



Alternative
For linear transformations and the following differential equation

311 Usxe + 2312Uxs + 30Uy + by(x, t)ux + ba(x, t)uy + c(x, t)u = h(x, t) ‘

Principal part: (alla%a% + 23128%% + 322%%) u



Alternative
For linear transformations and the following differential equation

311 Usxe + 2312Uxs + 30Uy + by(x, t)ux + ba(x, t)uy + c(x, t)u = h(x, t) ‘

Principal part: (alla%a@x + 23128%% T 322%%) u

Matrix notation:
(VTAV)u

Rewriting the first derivatives analogously yields:

(VIAV)u+ (b"V)u+cu=h A= (aﬂ al?)
di2  ax

Our differential equation: 14uy, + Quye + g = 0



— (VTAV)u = VT<

—
NCliS



9
e (VTAV)u = V7 <194 i) Vou=0

Transformation:
a) (1
w) \1

From above:

2

=T\ (XY o7 (X
) ()=o)

Uy = 1'Va+1'Vu,

ug=—7-vq—2-v,



9
<~ (VTAV)u = VT <194 i) V-u=0
2

Transformation: o = x—7t, u = x — 2t
a) (1 =7\ [(x\ o7 (X
(=G =) () =)

From above:

e (o= (1) (5 ()<

o 2
Therefore Vit = (‘?) =85-Vau=5- (daa
ot Em

Vo
= SVauv

(VLAY )u= (S-Vo,) -A-S-Vo,v=V] (5" A-S)Va,v =0



Here it holds that:

=Nl

sas=(1 ) (4 1) (5 )

New differential equation:

VI.STASVa,v = (&, &) (_25 0
2



Here it holds that:

sas= (3 ) (v 1) (5 5)=(

New differential equation:

5 0o -2
VISTASVauv = (55 57) (_25 02>
2

Vou =0 =
Vo = =
v(a,p) = ®(a) + V(u) = u(x, t) =

Determine @ and W by the initial conditions:
u(x,0) = up(x)
ut(x,0) = vp(x)



For our example with
u(x,t) = ®(x — 7t) + V(x — 2t)
and

up(x) = x +sin(x), vo(x) = =7 — 2 cos(x)

we obtain the conditions

u(x,0) = ®(x) + V(x) = x + sin(x)



Transformation to normal form

See lecture notes. Here: brief sketch

For linear partial differential equations of second order with
constant coefficients
’ 311 Uxxe + 2312Uxt + anpuy + b1(x, t)ux + ba(x, t)uy + c(x, t)u = h(x, t) ‘

Matrix notation:

(VTAV)u+ (b7 V)u + cu= h, A:<‘911 312)
di2 a2

A ist real and symmetric:
Determine eigenvalues A1, A> and corresponding orthonormal

eigenvectors vt vl



Transformation to normal form

See lecture notes. Here: brief sketch

For linear partial differential equations of second order with
constant coefficients

’ a11 s + 2a12Use + a2ty + bi(x, t)ux + bo(x, t)uy + c(x, t)u = h(x,t) ‘

Matrix notation:

(VTAV)u+ (b7 V)u + cu= h, A:<311 alz)
di2 a2

A ist real and symmetric:
Determine eigenvalues A1, A> and corresponding orthonormal

eigenvectors vl vl Let S = (v[l]7 v[2])7 (77> =7 (X)

T t
Change of coordinates gives the diagonal form:

AV + X2Ver + p1vyy + pove +dv = H

Hyperbolic: A1 - A» < 0, Elliptic: A1 - A» > 0, Parabolic: A1 - A, = 0.



For hyperbolic and elliptic equations scaling

£ =n/v/A1, t = 7/v/A2 gives the normal forms
lgg £ Ogp + pris + p2ly +di = H

For parabolic equations one eigenvalue, e.g., Aa, is zero. One of
the second derivatives is missing, e.g.. ... We divide the diagonal
form by A;.



For hyperbolic and elliptic equations scaling

£ =n/v/A1, t = 7/v/A2 gives the normal forms
lgg £ Ogp + pris + p2ly +di = H

For parabolic equations one eigenvalue, e.g., Aa, is zero. One of
the second derivatives is missing, e.g.. ... We divide the diagonal
form by A;.

Examples Diagonal Forms

Hyperbolic: Wave equation vy — c?uy = 0,
Elliptic: Potential-/Laplace equation Au = uy + u,, = 0,
Parabolic: Heat equation u; — cuy = O.



Harmonic functions

Definition
Let Q C R” be a bounded connected and open region with boundary
Q. A function u € C3(Q)N C(QUIQ) is called harmonic in Q, if

n
Au(x) = ZUX,,X,.(X) =0 Vx e Q
i=1



Harmonic functions

Definition
Let Q C R” be a bounded connected and open region with boundary
Q. A function u € C3(Q)N C(QUIQ) is called harmonic in Q, if

n
Au(x) = ZUX,,X,.(X) =0 Vx e Q
i=1

Example (Compare WS2a)
For which k € R and g : R — R is u harmonic in R??

Au:uXXJruyyéO V(x,y) € R?

a) u(x,y):= (x+k-y)?
b) u(x,y) = e -g(y)



Example (Compare WS2a)
For which k € R and g : R — R is u harmonic in R??

Au = Uy + uyy, <0 V(x,y) € R?

a) u(x,y) = (x+k-y)?



Example (Compare WS2a)
For which k € R and g : R — R is u harmonic in R??

Au = Uy + uyy, <0 V(x,y) € R?

a) u(x,y) = (x+k-y)?

b) u(x,y) = e -g(y)
ue = —3e > g(y), u, = e > g'(y)
Uxx = 9ei3x'g(y)7 Uy, = €
AU(XaY) = uXX(X7.y) + “yy(X7)/)

=9e > g(y)+e>-g"(y)
= e > (g"(y) + 9g(y)) = 0



Properties of Harmonic Functions

Theorem (Mean Value Property)

Let u be harmonic in B;(xo, yo) and continuously extendable up on
the boundary 0B,(xo, yo) of this ball. Then it holds

1

— u(x,y)dS
2ma JaB,(x0.y0) boy)

u(xo, yo) =



Properties of Harmonic Functions

Theorem (Mean Value Property)
Let u be harmonic in B;(xo, yo) and continuously extendable up on
the boundary 0B,(xo, yo) of this ball. Then it holds

1

— u(x,y)dS
2ma JaB,(x0.y0) boy)

u(xo, yo) =

Theorem (Maximum Principle)

Let Q be as before. Any harmonic function u on Q reaches its max
or min on the boundary of , i.e. maxq u = maxyq u and
ming U = mingq U.



Properties of Harmonic Functions

Theorem (Mean Value Property)

Let u be harmonic in B;(xo, yo) and continuously extendable up on
the boundary 0B,(xo, yo) of this ball. Then it holds

1

— u(x,y)dS
2ma JaB,(x0.y0) boy)

u(xo, yo) =

Theorem (Maximum Principle)
Let Q be as before. Any harmonic function u on Q reaches its max

or min on the boundary of , i.e. maxq u = maxyq u and
ming U = mingq U.

Theorem (Uniqueness)

Let Q be now only bounded and open and feC%(Q), geC°(99).
Then there exists at most one solution u € C2(Q) N C°(Q) to the
BvP

Au=1f in€, u=g on 0.



Solution Formula to the Laplace Equation

Poisson’s integral formula

Consider the Laplace BVP

Uxx + Uy, =0, x,y € Br(x0,Y0)
i.e.(X — XO)2 — (y — )/0)2 < R?
Uxx + ”yy = g(Xay)') X,y S aBR(X()?y())



Solution Formula to the Laplace Equation

Poisson’s integral formula

Consider the Laplace BVP

Uxx + Uy, =0, x,y € Br(x0,Y0)
i.e.(X — X())2 — (y — }/0)2 < R?
Uxx + ”yy = g(Xa.y)’ X,y S aBR(X()?y())

Then the solution is given by

U(X y): R2_(X_XO)2_(y_y0)2/ g(Z) dz
’ lz—(xo0)TI=R 112 =

27I'R (va)tH2



Fundamental Solution

Consider the Laplace BVP

Usx + Uy, = 07 X,y € BR(Xo,yo)
Uxx+uyy:g(X,y), vaeaBR(XanO)



Fundamental Solution

Consider the Laplace BVP
Uxx + Uyy = 0, x,y € Br(x0, y0)
o+ Uy = g(x,y), X,y € 0Br(x0, y0)
We define the fundamental solution
n=2 &(x) = 5 In(|x||2)
n>2 000 = kg (IxI37)

a, = volume of unit ball in R"



Fundamental Solution

Consider the Laplace BVP

Uxx + Uy = 07 X,y € BR(XOa.yO)
uxx+uyy:g(xay)v X7y€aBR(X07y())
We define the fundamental solution
n=2 &(x) = 5 In([x]2)
n>2 O(x) = — kg (IXIB )
o, = volume of unit ball in R"”
Every rotationally symmetric harmonic function on R" \ {0} has the
form
u(x) = ad(x) + b

for some a, b € R (see lecture notes p. 61-63).



Example (Compare WS2b, HW?2)

We are looking for the value u(1,2)7 of the C? function which satisfies
U + Uy, =0 for (x—1)>+(y—2)?> <9, and...

a) ...u(x,y) =2025 for (x—1)?+(y—2)2>=09.
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Method 1 Unique solution u(x,y) = 2025 solves the equation on the
whole ball. Hence u(1,2) =
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0. Thus, u(1,2) =



Example (Compare WS2b, HW?2)

We are looking for the value u(1,2)7 of the C? function which satisfies
U + Uy, =0 for (x—1)>+(y—2)?> <9, and...

a) ...u(x,y) =2025 for (x—1)?+(y—2)2>=09.
Method 1 Unique solution u(x,y) = 2025 solves the equation on the

whole ball. Hence u(1,2) =
Method 2 u(x,y) is constant on 9Q2. Max and Min are reached by u on

0. Thus, u(1,2) =
b) ...u(x,y) = x*> — y? 42025 for (x =12+ (y—2)2=0.
Hint: cos(2t) = cos®(t) — sin?(t).



Method 1

Let K denote the disk with radius r = 3 around (1,2)7 (lecture

Bs3(1,2))
and
c(t) = (1 +3cos(t), 2+ 3sin(t))", t € [0,27]

a parametrization of OK (lecture 0B3(1,2)).



Method 1

Let K denote the disk with radius r = 3 around (1,2)7 (lecture

Bs3(1,2))
and
c(t) = (1 +3cos(t), 2+ 3sin(t))", t € [0,27]

a parametrization of OK (lecture 0B3(1,2)).

The mean value property then yields

o1.2) = 5 | utey)dicy) = 5

2w - r

2
/0 u(e(t))- &(t)]| ot



u(1,2) = - /(9 ulxy) dcy) = 2;. 5 /8 (2 =y 2025) d(x.)

2m
o [ uteo)- feco o
- = /27T((1+3C°5(t))2—(2+3sin(t))2+2025) 3t
0
_ 1 /2”(1+6c05(t)+9c()52(t) 4~ 125in(t) — 9sin(£) + 2025) dt
2 0

2T

1 27
=5 / (9 cos(2t) — 3 4 2025) dt
0

= 2022



Method 2 Poisson's integral formula

R = (x— 1) — (y — 2 £(2)
u(x,y) = dz
’ ot

2R 1=k 2= ()

32 -02-0? 72 — 72 + 2025
u(1,2) = T/ TSN
7T l=@)i=s 2=l
9 [?™ ((1+43cos(t))? — (2 4 3sin(t))? +2025) .
=— 5 - lle(e)[| dt
67T 0 3
3

27
- ?/ (1+ 6.cos(t) + 9.cos?(£) — 4 — 12sin(t) — 9sin(£) + 2025) dt
T Jo

=2022.



Method 3 The solution is unique. Due to
(x®—y?+42025) 5+ (x> —y?42025),, =2-2=0, VYx,y € R

we already know the solution u(x,y) = x% — y? +2025. Thus,
u(1,2) = 12 — 22 42025 = 2022.



Rotational symmetric solutions

According to the lecture every rotational symmetric harmonic
function on R™\{0} can be expressed in terms of the fundamental
solution ®(x) as

u(x) = ad(x) + b, a,beR.

In the case of symmetric data (2, 0 ¢ Q and boundary values),
use fundamental solutions.

Example (Compare WS3)
Determine a solution to Av=0 fore®<x®+y?<ed,
2

)

vix,y)=1 onx>+y’=e

v(x,y) =0 onx®+y*=¢°.



The fundamental solution

1
®(x,y) = =5 In([l(x, y)l2)
yields the solutions
v(x,y) = a®(x,y) + b

for the PDE.



The fundamental solution

O(x,y) = 5= (6. ) 2)

yields the solutions
v(x,y) = a®(x,y) + b

for the PDE.

Let

v(x,y) = u(r,9) = w(r), r=+/x2+y2

This results in



The boundary values give
u(el,p) =1 = —% In(el) + b =1

— 2 ibh=1= b=1+ —.
2m 2m



The boundary values give
u(el,p) =1 = —% In(el) + b =1

== —i+b:1:> b:1+i

27 27
3 4y _a 3 4 _
u(e’,¢) =0 = 27TIn(e)+1+27T 0=
= a= T, b:1+1

27



The boundary values give
u(el,p) =1 = —% In(el) + b =1

== —i+b:1:> b:1+i

27 27
3 4y _a 3 4 _
u(e’,¢) =0 = 2wln(e)+1+2ﬁ 0=
= a= T, b:1+1
27

u(r,¢) =— % In(r) + g

3—1n (\/W)

2

V(X7y) =



	Second Order Differential Equations
	Harmonic Functions
	Laplace Equation

