
Disclaimer

This version is based on the German original:
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Overview

Conservation Laws

Recap: Methods of Characteristics

Scalar Conservation Laws
Recap: Transport Equation
Burger’s Equation

Weak Solutions



Continuity Equation: Reminder

▶ u(x , t): density

▶ q(x , t): flow

▶ v(x , t): velocity

▶ M(t) =
∫
Ω u(x , t)dx mass

▶ also

M(t) = M(t0) +

∫ t

t0

(∫
∂Ω

q(x , t) · n(x , t)dx
)
dt

comp. HW 2

▶ By some computation and regularity assumptions, we got

ut(x , t) +∇q(x , t) = 0



Recap: Methods of Characteristics

Basic idea
For a given PDE find curves (characteristics) γ where the solution
to the problem is constant and arrange the information to a full
solution.

Evolved idea
Reduce PDEs to underlying ODEs on characteristics in order to
find solutions via known ODE-methods.

Today

This does not have give full or unique solutions.



Scalar Conservation Laws

General space dimension

ut + divx(F (u)) ≡ 0, in (0,T )× Ω.

Space dimension 1

ut + f (u) ux ≡ 0, in (0,∞)×R.

Example

Easiest case: f ≡ const. gives the linear transport equation.

Today: Burgers equation

f (u) = u gives

ut +
1

2

(
u2
)
x
= ut + u ux ≡ 0, in (0,∞)×R.



Burger’s Equation

ut + u ux ≡ 0, in (0,∞)×R,
u(x , 0) = u0(x), on R.

Find general solutions via methods of characteristics:

▶ Ansatz characteristics: γ(t) = (x(t), t) with x ′(t) = u(γ(t))

▶ Solution on γ: ν(t) = u(γ(t)) with ν ′(t) ≡ 0

▶ Hence, x ′ = u(γ) = ν ≡ c1, i.e. x(t) = c1t + c2 is affine linear

▶ Thus, u is constant on charac. which are straight lines

Problem
Depending on the initial value, the solutions may not be unique.

▶ IV give x(0) = c2 = x(t)− c1t and
c1 = ν(t) = ν(0) = u0(x(0)) = u0(c2)

▶ Thus,
u(x , t) = u0(x − u(x , t)t)



Burger’s Equation

ut + u ux ≡ 0, in (0,∞)×R,
u(x , 0) = u0(x), on R.

▶ Thus, u is constant on charac. which are straight lines

▶ IV give c2 = x(0) = x(t)− c1t and
c1 = ν(t) = ν(0) = u0(x(0)) = u0(c2)

▶ Thus,
u(x , t) = u0(x − u(x , t)t)

For further analysis rewrite

x(t) = u0(x(0))t + x(0)



Burger’s Equation

ut + u ux ≡ 0, in (0,∞)×R,
u(x , 0) = u0(x), on R.

▶ Thus, u is constant on charac. which are straight lines

▶ x(t) = u0(x(0))t + x(0)

▶ u(x , t) = u0(x − u(x , t)t)

Example

u(x , 0) =


−2 x < −2

x −2 ≤ x ≤ 2

2 x ≥ 2

u(x , t) =


−2 x ≤ −2(1 + t)
x

1+t −2(1 + t) ≤ x ≤ 2(1 + t)

2 x ≥ 2(1 + t)



Burger’s Equation

ut + u ux ≡ 0, in (0,∞)×R,
u(x , 0) = u0(x), on R.

u(x , t) = u0(x − u(x , t)t)

Four different cases

1. u0 continuous and monotonically increasing: Uniqueness

2. u0 continuous and not monotonically increasing:
Non-uniqueness

3. u0 monotonically increasing and not continuous: Region
which is not touched by characteristic: rarefaction wave

4. u0 jumps down: Characteristics intersect: Shock wave s(t)



Burger’s Equation

x−Achseb

u
0
(b) =  0.5

a

u
0
(a) = 0.25

x= a+0.25 t

x = b + 0.5 t

t

ut + u ux ≡ 0, in (0,∞)×R,
u(x , 0) = u0(x), on R.

▶ u is constant on charac.
which are straight lines

▶ x(t) = u0(x(0))t + x(0)

▶ u(x , t) = u0(x − u(x , t)t)

Case 1: u0 continuous and monotonically increasing:
Uniqueness

For a < b consider characteristics γa = (xa(t), t) and
γb = (xb(t), t) with γa(0) = a and γb(0) = b such that

x ′a(t) = u0(a) < u0(b) = x ′b(t)



Burger’s Equation

x−Achse
a b

x= a + t

u
0
(a) = 1 u

0
(b) = 0.5

x= b + 0.5 t

t

ut + u ux ≡ 0, in (0,∞)×R,
u(x , 0) = u0(x), on R.

▶ u is constant on charac.
which are straight lines

▶ x(t) = u0(x(0))t + x(0)

▶ u(x , t) = u0(x − u(x , t)t)

Case 2: u0 continuous and not monotonically increasing:
Non-uniqueness

For a < b consider characteristics γa = (xa(t), t) and
γb = (xb(t), t) with γa(0) = a and γb(0) = b such that

x ′a(t) = u0(a) > u0(b) = x ′b(t)



Burger’s Equation

Case 3: u0 monotonically increasing and not continuous:
rarefaction wave
Region which is not touched by characteristics. The area without
characteristics is filled by the rarefaction wave u(x , t) = x−x0

t .

u=2 u= −1 

u= ? 

x
0
 

a

Example

u(x , 0) =

{
−1 x < x0

2 x ≥ x0

u(x , t) =


−1 x ≤ x0 − t,

? x0 − t < x < x0 + 2t

2 x ≥ x0 + 2t .



Burger’s Equation

Case 3: u0 monotonically increasing and not continuous:
rarefaction wave
Region which is not touched by characteristics. The area without
characteristics is filled by the rarefaction wave u(x , t) = x−x0

t .

Example (In General)

For uℓ < ur and u(x , 0) =

{
uℓ x ≤ x0

ur x > x0
the solution to Burger’s

problem is

u(x , t) =


uℓ x ≤ x0 + uℓ · t,
x − x0

t
x0 + uℓ · t < x < x0 + ur · t, t > 0

ur x ≥ x0 + ur · t .



Burger’s Equation

Case 4: u0 jumps down: Shock wave s(t)

The characteristics intersect. The shock wave describes the
movement of the discontinuity area.
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Example

u(x , 0) =

{
uℓ = 2 x ≤ x0

ur = −1 x > x0

Questions

▶ How can functions with (drastic)
discontinuities be solutions
to PDEs?

▶ What is s(t)?



Weak solutions

Definition (Weak solution)

Consider F ∈ C0(R) and u ∈ L∞
loc(R). A weak solution resp.

integral solution to the Cauchy problem for a conservation law

ut + (F (u))x ≡ 0 in (0,∞)×R

is a function u ∈ L∞
loc((0,∞)×R) such that∫ ∞

0

∫ ∞

−∞
(u vt + F (u)vx)dxdt +

∫ ∞

−∞
u0(x)v0(x)dx = 0

holds for all test functions v ∈ C1
cpt([0,∞)×R).



Weak solutions

Rankie-Hugoniot Jump Condition

In case 4 where we expect a weak solution being a shock wave
s(t), it must hold

s ′(t) =
F (uℓ)− F (ur )

uℓ − ur
,

where uℓ and ur are the left and right initial values. In the special

case of Burger’s equations, this turns into (binomic formula)

s ′(t) =

u2ℓ
2 − u2r

2

uℓ − ur
=

uℓ + ur
2

.



Physically reasonable weak solutions to conservation law
PDEs

We consider F to be regular and strictly convex.

uℓ + (F (u))x = 0, on (0,∞)×R,

u(x , 0) =

{
uℓ, x ≤ x0

ur , x > x0
, on R.

▶ uℓ > ur : Shock wave s(t) with s ′(t) = F (uℓ)−F (ur )
uℓ−ur

, then

u(x , t) =

{
uℓ x ≤ s(t),

ur x > s(t).

▶ uℓ < ur : rarefaction wave, then

u(x , t) =


uℓ x ≤ x0 + F ′(uℓ)t,

g

(
x − x0

t

)
x0 + F ′(uℓ)t < x < x0 + F ′(ur )t

ur x ≥ x0 + F ′(ur )t

with g = (F ′)−1.



Burger’s equation

uℓ > ur : Shock wave s(t) with s ′(t) = F (uℓ)−F (ur )
uℓ−ur

, then

u(x , t) =

{
uℓ x ≤ s(t),

ur x > s(t) .

u(x , 0) =

{
uℓ = 2 x < x0

ur = −1 x ≥ x0
⇒ s ′(t) =

u(x , t) =

{
uℓ = 2 x <

ur = −1 x ≥

u(x , 0) =

{
uℓ = −1 x < x0

ur = 2 x ≥ x0
=⇒

u(x , t) =


uℓ = −1 x <

≤ x ≤
ur = 2 x >



Burger’s equation

uℓ > ur : Shock wave s(t) with s ′(t) = F (uℓ)−F (ur )
uℓ−ur

, g = (F ′−1 then

u(x , t) =

{
uℓ x ≤ s(t),

ur x > s(t) .

u(x , 0) =

{
uℓ = 2 x < x0

ur = −1 x ≥ x0
⇒ s ′(t) = F (uℓ)−F (ur )

uℓ−ur
= 2+(−1)

2 = 1
2

u(x , t) =

{
uℓ = 2 x < x0 +

t
2 ,

ur = −1 x ≥ x0 +
t
2 .

u(x , 0) =

{
uℓ = −1 x < x0

ur = 2 x ≥ x0
=⇒

u(x , t) =


uℓ = −1 x <

≤ x ≤
ur = 2 x >



Burger’s equation

uℓ < ur : rarefaction wave, then

u(x , t) =


uℓ x ≤ x0 + F ′(uℓ)t,

g

(
x − x0

t

)
x0 + F ′(uℓ)t < x < x0 + F ′(ur )t

ur x ≥ x0 + F ′(ur )t

u(x , 0) =

{
uℓ = 2 x < x0

ur = −1 x ≥ x0
⇒ s ′(t) = F (uℓ)−F (ur )

uℓ−ur
= 2+(−1)

2 = 1
2

u(x , t) =

{
uℓ = 2 x < x0 +

t
2 ,

ur = −1 x ≥ x0 +
t
2 .

u(x , 0) =

{
uℓ = −1 x < x0

ur = 2 x ≥ x0
=⇒

u(x , t) =


uℓ = −1 x <

≤ x ≤
ur = 2 x >



Burger’s equation

uℓ < ur : rarefaction wave, then

u(x , t) =


uℓ x ≤ x0 + F ′(uℓ)t,

g

(
x − x0

t

)
x0 + F ′(uℓ)t < x < x0 + F ′(ur )t

ur x ≥ x0 + F ′(ur )t

u(x , 0) =

{
uℓ = 2 x < x0

ur = −1 x ≥ x0
⇒ s ′(t) = F (uℓ)−F (ur )

uℓ−ur
= 2+(−1)

2 = 1
2

u(x , t) =

{
uℓ = 2 x < x0 +

t
2 ,

ur = −1 x ≥ x0 +
t
2 .

u(x , 0) =

{
uℓ = −1 x < x0

ur = 2 x ≥ x0
=⇒ g(x) = (F ′)−1(x) = x

u(x , t) =


uℓ = −1 x < x0 − t,
x−x0
t x0 − t ≤ x ≤ x0 + 2t

ur = 2 x > x0 + 2t.



Burger’s Equation Example

uℓ < ur : Rarefaction wave, then

u(x , t) =


uℓ x ≤ x0 + F ′(uℓ)t,

g

(
x − x0

t

)
x0 + F ′(uℓ)t < x < x0 + F ′(ur )t

ur x ≥ x0 + F ′(ur )t

with

g = (F ′)−1.

u(x , 0) =


−1 x ≤ −2 ,

0 −2 < x ≤ 3 ,

1 x > 3 .

u(x , t) =



−1 x ≤

< x ≤

0 < x ≤

< x ≤

1 x >



Burger’s Equation Example

uℓ < ur : rarefaction wave, then

u(x , t) =


uℓ x ≤ x0 + F ′(uℓ)t,

g

(
x − x0

t

)
x0 + F ′(uℓ)t < x < x0 + F ′(ur )t

ur x ≥ x0 + F ′(ur )t

with

g = (F ′)−1.

u(x , 0) =


−1 x ≤ −2 ,

0 −2 < x ≤ 3 ,

1 x > 3 .

u(x , t) =



−1 x ≤ −2− t

x+2
t −2− t < x ≤ −2

0 −2 < x ≤ 3

x−3
t 3 < x ≤ 3 + t

1 x > 3 + t



Burger’s Equation Example

uℓ > ur : Shock wave s(t) with s ′(t) = F (uℓ)−F (ur )
uℓ−ur

, then

u(x , t) =

{
uℓ x ≤ s(t),

ur x > s(t) .

u(x , 0) =


1
2 x ≤ −1 ,

−1 −1 < x ≤ 1 ,

−2 x > 1 .

First we get

s1(t) =

s2(t) =

u(x , t) =


1
2 x ≤
−1 < x ≤
−2 x >



Burger’s Equation Example

uℓ > ur : Shock wave s(t) with s ′(t) = F (uℓ)−F (ur )
uℓ−ur

, then

u(x , t) =

{
uℓ x ≤ s(t),

ur x > s(t) .

u(x , 0) =


1
2 x ≤ −1 ,

−1 −1 < x ≤ 1 ,

−2 x > 1 .

First we get

s1(t) = − 1
4 t − 1

s2(t) = − 3
2 t + 1

u(x , t) =


1
2 x ≤ − 1

4 t − 1

−1 − 1
4 t − 1 < x ≤ − 3

2 t + 1

−2 x > − 3
2 t + 1



Burger’s Equation Example

u(x , 0) =


1
2 x ≤ −1 ,

−1 −1 < x ≤ 1 ,

−2 x > 1 .

First we get s1(t) = − 1
4 t − 1,

s2(t) = − 3
2 t + 1, thus, u(x , t) =


1
2 x ≤ − 1

4 t − 1

−1 − 1
4 t − 1 < x ≤ − 3

2 t + 1

−2 x > − 3
2 t + 1

▶ This only works out until the shock waves meet:

s1(t
∗) = s2(t

∗) ⇔ t∗ =
8

5

▶ New shock wave with uℓ =
1
2 and ur = −2

s3(t) = s1(t
∗) + s ′3(t)(t − t∗) with s ′3 =

uℓ + ur
2

= −3

4

▶ Hence,

u(x , t) =

{
1
2 x ≤ − 3

4 t − 1
5 ,

−2 x > − 3
4 t −

1
5

for t > t∗.



Burger’s Equation Example

u(x , 0) =


− 1

2 x ≤ 0 ,

0 0 < x ≤ 1
2 ,

−1 x > 1
2 .

For small t, we can continue as usual:

u(x , t) =


− 1

2 x ≤ − 1
2 t

x−0
t − 1

2 t < x ≤ 0

0 0 < x ≤ − 1
2 t +

1
2

−1 x > − 1
2 t +

1
2

This can only be true for t∗ ≤ 1. Find new shock wave s(t) with

▶ uℓ =
x
t = s(t)

t , ur = −1 =⇒ s ′(t) =
s(t)
t − 1

2

▶ s ′(t) = 1
2t · s(t) − 1

2 (linear ODE to solve for instance with
homogenization and variation of constant)

▶ Solution: s(t) = c
√
t − t

▶ Since s(1) = 0, get c = 1



Burger’s Equation Example

Hence, for t > 1, we found

u(x , t) =


−1

2 x ≤ − t
2

x
t − t

2 < x ≤
√
t − t

−1 x >
√
t − t

which by itself is only valid for t ≤ 4. At this time, the rarefaction
wave is faded. The wave front is then described by

s̃(t) = s(4) + s̃ ′(t)(t − 4) = −2 +
−1

2 − 1

2
· (t − 4),

which gives

u(x , t) =

{
−1

2 x ≤ −3
4 t + 1 ,

−1 x > −3
4 t + 1 .



Another Conservation Law

ut +
(
(u + 1)2

)
x
= 0 , u(x , 0) = u0(x)

▶ F (y) = (y + 1)2

▶ F ′(y) = 2(y + 1)

▶ g(y) = (F ′)−1(y) = y
2 − 1

▶ g( x−x0
t ) = x−x0

2t − 1

For example for u(x , 0) =

{
−1 x ≤ 3

0 x > 3
we derive the

rarefaction wave

u(x , t) =


−1 x ≤ 3 +−1

2 t,

x − 3

t
− 1 3 +−1

2 t < x < 3− t

0 x ≥ 3− t .



Another Conservation Law

For uℓ > ur there must be a rarefaction wave inserted

ṡ(t) =
F (uℓ)− F (ur )

uℓ − ur
=

(uℓ + 1)2 − (ur + 1)2

uℓ − ur
= 1.

For example

u(x , 0) =

{
0 x ≤ 3

−1 x > 3

u(x , t) =

{
0 x ≤ s(t) = 3 + t

−1 x > s(t) = 3 + t.



Concerning Homework 3

▶ As a reminder: The conservation equation is

( density )t + ( flow )x = 0 here: ut + qx = 0,

where flow = velocity · density
▶ If you do not manage part a), continue in b) with

ut +

(
u · vmax (1−

u

umax
)

)
x

= 0

▶ The condition for spurious waves is uℓ > ur for Burgers, but in
general:

F ′(uℓ) > F ′(ur ) here q′(uℓ) > q′(ur )

▶ The jump condition must apply!

▶ Interference waves: Characteristics run into interference front!
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