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Announcements

Exercise class Monday, May 5th, 11:30



Overview

Method of Characteristics: Homogeneous PDEs

Examples



Continuity Equation: Reminder

▶ u(x , t): density

▶ q(x , t): flow

▶ M(t) =
∫
Ω u(x , t)dx mass

▶ also

M(t) = M(t0) +

∫ t

t0

(∫
∂Ω

q(x , t) · n(x , t)dx
)
dt

comp. HW 2

▶ By some computation and regularity assumptions, we got

ut(x , t) +∇q(x , t) = 0



Continuity Equation

▶ Scalar case: ut + (q(u, v))x = 0 (u = u(x , t), v = v(x , t))
▶ Easiest case: q(u, v) = const · u: transport equation
▶ density profile moves without change along the time variable

ut + cux = 0
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(a) Start function u(x , 0)
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(b) Solution u(x , t)

Figure: Start function and corresponding solution



Method of characteristics for the homogeneous
continuity equation with initial values u(x , t0) = u0

Basic idea to solve these equations:

1. Find curves (x(t), t) in the (x , t)-plane along which u is
constant. (=characteristics)

2. Find intersection of this curve with the initial values

3. Interpreting the results in the right way gives the solution



Strategy: Step 1

Step 1: On the characteristic curves, we want u(x(t), t) = K ,
so:

d
dt u(x(t), t) =



Strategy: Step 2

Step 2: For the transport equation ut + cux = 0 with initial
condition u(x , 0) = f (x)

ẋ(t) =

x(t) =

x(0) =

u(x(t), t) = u(x(0), 0)



Now a bit more generally:



Case A: Initial Value Problem for a Linear Homogeneous
PDE

Coefficients do not depend on u.

β(x , t)ut(x , t) + a(x , t)ux(x , t) = 0, x ∈ R, t > 0

u(x , 0) = g(x), x ∈ R



Case A - Characteristics

Coefficients do not depend on u.

β(x , t)ut(x , t) + a(x , t)ux(x , t) = 0, x ∈ R, t > 0

u(x , 0) = g(x), x ∈ R
(1)

Step 1: Determine characteristic curves s 7→ (x(s), t(s))T with:

dt

ds
= β(x , t),

dx

ds
= a(x , t)

Then along these characteristic curves:

d

ds
u (x(s), t(s)) = ux ·

dx

ds
+ ut ·

dt

ds
= β ut + a ux .



Case A - Solution

Thus, for every solution u of PDE
d

ds
u (x(s), t(s)) = 0.

Solution of PDE (1) u is (in homogeneous case) constant
along characteristic curves



Case A - Alternative Soltuion

Alternatively, a simpler and faster concrete solution is available in
the case β(x , t) ̸= 0, use t as the parameter.

We had
dt

ds
= β(x , t)

dx

ds
= a(x , t)

The characteristic curves are t 7→
(x(t)

t

)
with

ẋ(t) =
dx

dt
=

a(x , t)

β(x , t)
.

Step 2: Find where the characteristic through (x , t) intersects the
initial condition curve.
Step 3: Read u(x , t) from initial values or solve for it explicitly.



Example 1: Another Transport Equation

2ut − 4ux = 0, u(x , 0) = sin
(
x
2

)
dt
ds = , dxds = or dx

dt =

=⇒ x(t) =



Example 1: Transport Equation

2ut − 4ux = 0, u(x , 0) = sin
(
x
2

)
dt
ds = , dxds = or dx

dt =

=⇒ x(t) =

Solution constant along the lines

(
x(t)
t

)
with x =

Intersection of the line with thex-axis
(Initial values): x(0) = k

On the characteristic curves: u(x(t), t) = u(x(0), 0) = sin
(
x(0)
2

)
How does k=x(0) depend on x and t?

k=

Solution: u(x,t)=



Be aware

Initial values cannot always be prescribed arbitrarily. Some choices
lead to no solution or non-uniqueness.

The PDE above with

u(−2a, a) = g(a)

=⇒ no solution or infinite many solutions

The PDE above with

u(x , t) = x for
√

(t − 1)2 + x2 = 1

=⇒ no solution
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Example 2

1 · ut + (x + 1)ux = 0 x ∈ R, t > 0,

u(x , 0) = g(x) x ∈ R

Then the following holds for the characteristic curves.

dt

ds
= 1 ,

dx

ds
= x + 1 , or

dx

dt
= x + 1

For x ̸= −1:

dx

x + 1
= dt =⇒ ln |x + 1| = k + t =⇒ x(t) = cet − 1



Example 2

PDE: ut + (x + 1)ux = 0 states for x = −1:
ut = 0 =⇒ u(−1, t) = u(−1, 0) = g(−1).
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c=30

c=20

c=10c=0c=−10c=−20

c= − 30

Along the curves, the solution is constant and depends only on c .



Example 2

We had x(t) = cet − 1 so:

c =

For t = 0 holds x0 := x(0) = c − 1
The (x , t) associated with x0 is thus x0 =

Along each characteristic curve, it again holds that

u(x , t) = u(x0, 0) = g(x0) = g ( )



Example 3: One dimension more

2xux + yuy + tut = 0, x , y ∈ R, t ∈ R+

E.g. equipped with the initial condition u(x , y , 2) = sin(x)e−y .

Find curves (x(s), y(s), t(s)) such that u(x(s), y(s), t(s)) is
constant!

Then it holds: d
ds u(x(s), y(s), t(s)) =



Example 3: One dimension more

Characteristic differential equation system:



Example 3: One dimension more

Or with t as parameter for t ̸= 0 for 2xux + yuy + tut = 0



General Case: Quasi-linear First Order PDEs

Coefficients may depend on u; may be inhomogeneous.

Example:

1 ∗ ut(x , t) + a(x , t, u)ux(x , t) = b(x , t, u)

Auxiliary Problem: Find a function U(x , t, u) satisfying:

1 · Ut + a(x , t, u) · Ux + b(x , t, u) · Uu = 0 (2)

Characteristic system of differential equations with s as
parameter:

dt

ds
= 1,

dx

ds
= a(x , t, u),

du

ds
= b(x , t, u)

Or with t as parameter:

dx

dt
= a(x , t, u) ,

du

dt
= b(x , t, u). (3)



General Case: Quasi-linear First Order PDEs

Then it holds for every solution U der PDE (2) along the
characteristic curves:

d

ds
U (x(s), t(s), u(s)) = Ux ·

dx

ds
+ Ut ·

dt

ds
+ Uu ·

du

ds
= Ut + a Ux + b Uu = 0

Integrate the system (3) to obtain C1,C2 constants.

Characteristic curves are defined by these parameters:
U(x , t, u) = Φ̃(C1,C2) = K constant on characteristic curves

Φ = Φ̃− K =⇒ Φ(C1,C2) = Φ(C1(x , t, u),C2(x , t, u)) = 0

One equation for 2 unknows: solve if possible C2 = f (C1)



Interlude

Justification for using the auxiliary PDE (2) for the original
problem.
On every characteristic curve U(x , t, u)− K = 0.
If Uu ̸= 0, by the implicit function theorem,

u = u(x , t),

(
ux
ut

)
= −U−1

u

(
Ux

Ut

)
Then: Ux = −ux · Uu Ut = −ut · Uu

Ut + a Ux + b Uu = 0 ⇐⇒ −ut · Uu − a ux · Uu + b Uu = 0

⇐⇒ −ut − a ux + b = 0

u solves the original PDE



Example 1:Linear inhomogeneous initial value problem

ut − 2ux = t, u(x , 0) =
1

1 + x2



Example 1:Linear inhomogeneous initial value problem

ut − 2ux = t, u(x , 0) =
1

1 + x2

Step 1: Set up the characteristic system of differential equations:

dx
dt = du

dt =



Example 1:Linear inhomogeneous initial value problem

ut − 2ux = t, u(x , 0) =
1

1 + x2

Step 1: Set up the characteristic system of differential equations:

dx
dt = du

dt =

Step 2: Solve and express the constants of integration using the
variables.

=⇒ x(t) = u(t) =
C = D =



Example 1:Linear inhomogeneous initial value problem

ut − 2ux = t, u(x , 0) =
1

1 + x2

Step 1: Set up the characteristic system of differential equations:

dx
dt = du

dt =

Step 2: Solve and express the constants of integration using the
variables.

=⇒ x(t) = u(t) =
C = D =



Example 1:Linear inhomogeneous initial value problem

Step 3: If possible, solve D = f (C ) for u.

Step 4: Determine f and thus u using the initial values.



Example 2

ux + y2uy = u2, u(x , 1) = 1 x ∈ R, y ∈ R+

Auxiliary problem: U



Example 2

ux + y2uy = u2, u(x , 1) = 1 x ∈ R, y ∈ R+

Auxiliary problem: Ux + y2Uy + u2 · Uu = 0



Example 2: Step 1

ux + y2uy = u2, u(x , 1) = 1 x ∈ R, y ∈ R+

Set up the characteristic system of differential equations:

dy

dx
= ,

du

dx
=



Example 2: Step 2

Solve, express integration constants using the variables∫ dy

y2
=

∫
dx ,=⇒ −1

y
= x − C1 =⇒ C1 =

1

y
+ x

Completely analogously, we obtain C2 =
1

u
+ x



Example 2: Step 3

If possible, solve D = f (C ) for u.

Solution satisfies: Φ(C1,C2) = Φ(
1

y
+ x ,

1

u
+ x) = 0

In the case of solvability, the following holds: C2 = f (C1)

1

u
+ x =



Example 2: Step 3

If possible, solve D = f (C ) for u.

Solution satisfies: Φ(C1,C2) = Φ(
1

y
+ x ,

1

u
+ x) = 0

In the case of solvability, the following holds: C2 = f (C1)

1

u
+ x = f (

1

y
+ x) =⇒ 1

u
= f (

1

y
+ x)− x



Example 2: Step 4

Determine f and thus u using the initial values.

Initial condition u(x , 1)
!
= 1 :

u(x , y) =
1

f

(
1

y
+ x

)
− x

y=1
=⇒



Example 3:

Determine the solution of the initial value problem.

ut + 2xux = tu, x ∈ R, t ∈ R+,

u(x , 0) = sin(x).



Example 3

Solution: For the characteristics, the following holds

dx

dt
= 2x =⇒

x(t) = c1e
2t , c1 = xe−2t .

On the characteristic curves, the following holds

du

dt
= tu =⇒

u(x(t), t) = c2e
t2

2 =⇒



Example 3

So c2 = ue−
t2

2

With a suitable Φ then holds: Φ(c1, c2) = 0 =⇒

If solvable according to c2 : c2 = f (c1) :
c2 =

On the other hand u(x , 0)
!
= sin(x), therefore

u(x , 0) =

Thus, we obtain the solution.

u(x , t) = sin(xe−2t) · e
t2

2 .



Example 4: ARWA

Determine the solution u(x , t) of the following initial-boundary
value problem.

ut + 2ux + u = 0, x , t > 0

u(x , 0) = 0 (x ≥ 0)

u(0, t) = t2 (t ≥ 0)

by means of the method of characteristics.



Example 4: ARWA

Idea: Determine the solution u(x , t) of the following
initial-boundary value problem.

ut + 2ux + u = 0, x , t > 0

u(x , 0) = 0 (x ≥ 0)

u(0, t) = t2 (t ≥ 0)

by means of the method of characteristics.

Idea: Determine a solution for each initial condition u(x , 0) = 0,
and one for the boundary condition u(0, t) = t2 and smoothly
assemble these solutions.



Example 4: ARWA

Using the method of characteristics, we obtain:
dx

dt
= 2,

du

dt
= −u

x(t) = 2t + C1 u(x(t), t) = C2e
−t

=⇒ C1 = x − 2t, C2 = uet

Φ (x − 2t, uet) = 0 yields a solution if solvable

u = e−t f (x − 2t).



Example 4: ARWA

From the boundary values u(0, t) = t2 we obtain

t2 = e−t f (0− 2t)

or with µ = −2t i.e. t = −µ
2

f (µ) =
(
−µ

2

)2
e−

µ
2

and thus one obtains for the solution

uR(x , t) = e−t f (x − 2t) = e−t

(
− x − 2t

2

)2

e
−(x−2t)

2 =

e−
x
2

(
2t − x

2

)2



Example 4: ARWA

On the other hand, if one substitutes into the general solution
u(x , t) = e−t f̃ (x − 2t)
Substituting the initial data u(x , 0) = 0, we obtain:

The solutions can be smoothly combined along curves where u = ũ
holds. This is the case along the line x = 2t. Therefore, we obtain
as the solution to the original problem:

u(x , t) =

e−
x
2

(
2t − x

2

)2

x ≤ 2t

0 x > 2t

It would still need to be verified whether the solution along the line
x = 2t is continuously (partially) differentiable.
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