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Absolutely necessary techniques

• Solve simple ordinary DEs, for example

– separable (compare, e.g., method of characteristics)
– linear with constant coefficients (compare, e.g., heat equation)

ẏ(t) + αy(t) = h(t)

General solution of homogeneous DE: yh(t) = γe−αt, γ ∈ R

Particular solution of inhomogeneous DE:

yp(t) := γ(t)e−αt DE−→ γ̇(t) −→ γ(t) −→ yp(t)

y(t) = yh(t) + yp(t) = γe−αt + yp(t)
Determine γ by initial values!
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• Very simple integrals, integration by parts

For the computation of, for example, d’Alembert, Fourier coefficients, cha-
racteristics

• Computation of Fourier coefficients (Sheets 6)

• polar < −−− > Cartesian (Work sheet 4, Homework 4)

• Determinant/Eigenvalues of 2x2 matrices (Work sheet 4)
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Sheet 1:

W1: Ansatz for the solution of the heat equation is given. Determine parameters
by plugging it into the equation.

W2: Ansatz for the solution of the telegraph equation is given. Determine
parameters by plugging it into the equation.

H1: Definitions, order, semi-, quasi-, linear etc.

H2: Traffic model, continuity equation, transport equation ut − cux = 0
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Sheet 2: Method of characteristics

W1, W2, H1: Method of characteristics (standard), IVP:

ut + a(x, t, u)ux = b(x, t, u)

W3: First nonlinear DE, Questions about characteristics:
Shape of the characteristic?/ Is the space filled?

H2: Questions about characteristics:
Shape/ solution constant along characteristics?

H3: Method of characteristics on quadrant
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Sheet 3:

W1: Burgers equation: two rarefaction waves, two shock waves, respectively

W2: Continuity equation, ut +
(
(u−2)4

2

)
x
= 0, u(x, 0) not continuous.

jump condition, entropy solution.

W3: Nice-to-have. Irreversibility of non-smooth solutions of Burgers equation

H1a) Short question about: Entropy solution, weak solution, rarefaction waves.

H1b) Entropy solutions for continuity equations other than Burgers equation.

H2) Burgers equation: rarefaction wave next to shock wave

• Required: solution up to the point where the waves meet

• Nice-to-have: solution after the two waves met.
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H3) Traffic flow model, non convex flow function
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Second order differential equations

Sheet 4:

P1) Transform to integrable form. Solve new DE

P2a) Harmonic functions.
P2b) Mean value property.

P3) Rotational symmetric solution of Laplace equation. Fundamental solutions

H1) Classify (parabolic, elliptic, hyperbolic)

H2) Mean value property/ maximum principle /determine values at given points
by the uniqueness of the solution
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Sheet 5:

P) IBVP: Inhomogeneous heat equation, inhomogeneous boundary values

• Transform to IBVP with homogeneous boundary values.

• Homogeneous DE, homogeneous boundary values: Product ansatz
−→ closed-form solution
−→ equating coefficients.

• Inhomogeneous DE, homogeneous boundary values: closed-form solution
−→ ordinary DE
−→ solve initial value problem for ordinary DE

• solution of original differential equation : superposition
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H1) Laplace equation on discs: Product ansatz.
−→ closed-form solution
−→ equating coefficients.

H2) Heat equation,
Derive solution approach for Neumann boundary conditions
Solve example by equating coefficients.
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Sheet 6:

W1) IVP wave equation, inhomogeneous,
Ansatz for the solution of the inhomogeneous DE is given
Homogeneous differential equation : d’Alembert
Combine (superposition).

W2) IBVP wave equation, homogeneous DE, homogeneous boundary values
−→ closed-form solution
−→ equating coefficients (AK = 0) und Fourier coefficients for Bk.

H1a) IVP wave equation, homogeneous DE: d’Alembert, standard

H1b) IVP, homogeneous DE, data not smooth: d’Alembert
Sketch solution for fixed values of t.

H2) IBVP wave equation, homogeneous DE, homogeneous boundary values
−→ closed-form solution
−→ equating coefficients (BK = 0) and Fourier coefficients for Ak.

H3) IBVP: Inhomogeneous wave equation, inhomogeneous boundary values
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−→ Reduce/transform to IBVP with homogeneous boundary values.
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Summary of some
(not all)

closed-form formulas

No guarantee!

Please compare to the lecture notes/formulary before the exam!
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Summary of some (not all) closed-form formulas for differential equations
of first order:

Method of characteristics

ut(x, t) + a(x, t, u)ux(x, t) = b(x, t, u) .

Auxiliary problem : Ut + a · Ux + b · Uu = 0

dt

ds
= 1

dx

ds
= a(x, t, u),

du

ds
= b(x, t, u)

or (with t as parameter)

dx

dt
= a(x, t, u) ,

du

dt
= b(x, t, u). (1)

Solving/integrating yields C1(x, t, u), C2(x, t, u)

Let C2 = f(C1). Solve for u if possible

and determine f by the initial condition
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Burgers and similar equations, rarefaction and shock waves

ut + (f(u))x = 0 .

dx

dt
= f ′(u) ,

du

dt
= 0. (2)

the slope of the characteristics depends on u only

u is constant along characteristic

characteristics are straight lines

often sketches are useful

For (Riemann problem)

ut + (f(u))x = 0, (f strictly convex), u(x, 0) =

{
ul x ≤ x0

ur x > x0
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Entropy solution:

• If ul > ur : shock front (discontinuity curve) s(t) with:

Rankine- Hugoniot- jump condition:

ṡ(t) =
f(ul)− f(ur)

ul − ur
=:

[f ]

[u]

u(x, t) =

{
ul x ≤ s(t),

ur x > s(t) .

• If ul < ur: rarefaction wave.
Let g = (f ′)−1 = inverse function of f ′

u(x, t) =


ul x ≤ x0 + f ′(ul) · t,

g

(
x− x0

t

)
x0 + f ′(ul) · t < x < x0 + f ′(ur) · t

ur x ≥ x0 + f ′(ur) · t .
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Summary of some (not all) closed-form formulas for differential equations of
second order

For the exam:
Use the formulas that were derived in the lecture/auditorium exercise directly.
Don’t start from the product ansatz.

In the following we give solution formulas for:

Heat equation initial boundary value problem

Wave equation initial value problem

Wave equation initial boundary value problem

Laplace equation: rotational symmetric

Laplace equation: not rotational symmetric
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I) Heat equation, initial boundary value problem (IBVP), homogeneous
differential equation, homogeneous boundary values:

ut − cuxx = 0 c > 0, x ∈ (0, L), t > 0,

u(x, 0) = u0(x) x ∈ [0, L],

u(0, t) = 0 t > 0,

u(L, t) = 0 t > 0,

u(x, t) =

∞∑
k=1

ake
−cω2k2t sin(kωx) ω =

π

L

u(x, 0) =
∞∑
k=1

ak sin(kωx)
!
= u0(x) equating coefficients may be possible

ak =
2

L

∫ L

0

u0(x) sin(kωx) dx ←− if equating coefficients not possible
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II) Heat equation, IBVP, inhomogeneous differential equation, homoge-
neous boundary values:

ut − cuxx = h(x, t), x ∈ (0, L), t > 0, c > 0

u(x, 0) = u0(x), x ∈ (0, L)

u(0, t) = 0 u(L, t) = 0 t > 0

u(x, t) =

∞∑
k=1

ak(t) sin(kωx) ω =
π

L

Solve initial value problems

ȧk(t) + ak(t)
ck2π2

L2
= ck(t), ak(0) = bk
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Where

∞∑
k=1

ck(t) sin(kωx)
!
= h(x, t) equating coefficients may be possible

otherwise:

ck(t) =
2

L

∫ L

0

h(x, t) sin(kωx)dx

u(x, 0) =

∞∑
k=1

bk sin(kωx)
!
= u0(x) equating coefficients may be possible

otherwise:

bk =
2

L

∫ L

0

u0(x) sin(kωx)dx
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III) Heat equation, IBVP, inhomogeneous boundary values:

ut − c uxx = h(x, t), x ∈ (0, L), t > 0

u(x, 0) = u0(x), x ∈ (0, L)

u(0, t) = f(t) u(L, t) = g(t) t > 0

Reduce to solving a IBVP with homogeneous boundary values:

v(x, t) = u(x, t)− f(t)− x

L
(g(t)− f(t))

yields a new problem for v with homogeneous boundary values.

In case the new DE is homogeneous: Case I).
In case the new DE is inhomogeneous: Case II).
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Wave equation:

A) IVP, homogeneous:

ũtt − c2ũxx = 0, ũ(x, 0) = g(x), ũt(x, 0) = h(x), x ∈ R, c > 0

ũ(x, t) =
1

2
[g(x+ ct) + g(x− ct)] +

1

2c

∫ x+ct

x−ct

h(α) dα

B) IVP, inhomogeneous:

utt − c2uxx = f(x, t), u(x, 0) = g(x), ut(x, 0) = h(x), x ∈ R, c > 0

u(x, t) = ũ+ û (ũ as in A)

û(x, t) =
1

2c

∫ t

0

∫ x−c(τ−t)

x+c(τ−t)

f(ω, τ) dω dτ
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B) IBVP, homogeneous differential equation, homogeneous boundary
values:

utt − c2uxx = 0, x ∈ (0, L), t > 0, c > 0

u(x, 0) = u0(x), ut(x, 0) = w0(x) x ∈ (0, L)

u(0, t) = 0 u(L, t) = 0 t > 0 ω :=
π

L

u(x, t) =

∞∑
k=1

[Ak cos (ckωt) + Bk sin (ckωt)] sin (kωx)

Equating coefficients may be possible

u(x, 0) =

∞∑
k=1

Ak sin (kωx)
!
= u0(x)

ut(x, 0) =

∞∑
k=1

ckω ·Bk sin (kωx)
!
= w0(x).
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Otherwise:

Ak =
2

L

∫ L

0

u0(α) sin(kωα) dα, Bk =
2

ckπ

∫ L

0

w0(α) sin(kωα) dα

or Bk =
1

ckω
bk where bk =

2

L

∫ L

0

w0(α) sin(kωα) dα,
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C) Inhomogeneous differential equation, homogeneous boundary values

utt − c2uxx = h(x, t) c > 0, x ∈ (0, L), t > 0

u(x, 0) = u0(x) x ∈ (0, L),

ut(x, 0) = v0(x) x ∈ (0, L),

u(0, t) = 0 t > 0,

u(L, t) = 0 t > 0,

where ω = π
L

u(x, t) =

∞∑
k=1

qk(t) sin(kωx)
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Solve q′′k(t) + c2k2ω2qk(t) = ck(t) , qk(0) = ak, q
′
k(0) = bk

with: ak =
2

L

∫ L

0

u0(x) sin(kωx) dx.

bk =
2

L

∫ L

0

v0(x) sin(kωx) dx.

ck(t) =
2

L

∫ L

0

h(x, t) sin(kωx) dx.

Fourier coefficients may be computed by equating coefficients!
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D) IBVP, inhomogeneous boundary values:

utt − c2uxx = h(x, t), x ∈ (0, L), t > 0

u(x, 0) = u0(x), ut(x, 0) = v0(x) x ∈ (0, L)

u(0, t) = f(t) u(L, t) = g(t) t > 0

Reduce to the solution of IBVP with homogeneous boundary values:

w(x, t) = u(x, t)− f(t)− x

L
(g(t)− f(t))

this yields a new problem for w with homogeneous boundary values.

In case that the new DE is a homogeneous wave equation: Case B)
In case that the new DE is an inhomogeneous wave equation: Case C)
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Laplace equation

A) Rotational symmetric

Each rotational symmetric harmonic function on Rn \ {0} can be represented
by the fundamental solution Φ(x) as

u(x) = aϕ(x) + c, a, c ∈ R.

For n = 2 : ϕ(x, y) = − 1
2π ln(∥

(
x
y

)
∥2) = − 1

2π ln(
√
x2 + y2)

for n = 3 : ϕ(x, y, z) = 1
4π∥(x, y, z)∥

−1
2 = 1

4π
1√

x2+y2+z2
.

a and c can be determined by the boundary values.
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B) Not rotational symmetric on rings, inside and outside of disks

Laplace operator in polar coordinates: x = r cos(ϕ), y = r sin(ϕ).

∆u = 0
r ̸=0⇐⇒ urr + 1

rur +
1
r2
uϕϕ = 0 .

u(r, ϕ) = c0 + d0 ln(r) +

∞∑
k=1

(ckr
−k + dkr

k)(ak cos(kϕ) + bk sin(kϕ))

Depending on the domain we need to exclude summand that are not bounded.

29



Procedure in the outer space:

∆u = 0 for (x2 + y2 =) r2 > R2 and u(R,ϕ) = u0(ϕ):

Since the solutions should stay bounded: dk = 0 , ∀k.

We are left with: u(r, ϕ) =
a0
2

+

∞∑
k=1

r−k (ak cos(kϕ) + bk sin(kϕ))

Moreover, the boundary condition needs to be fulfilled u(R,ϕ) = u0(ϕ).

We obtain the solution

u(r, ϕ) =
A0

2
+

∞∑
k=1

(
R

r

)k

(Ak cos(kϕ) + Bk sin(kϕ))
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where the Fourier coefficients of u0 are

Ak =
1

π

∫ 2π

0

u0(ϕ) cos(kϕ) dϕ

Bk =
1

π

∫ 2π

0

u0(ϕ) sin(kϕ) dϕ
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Procedure in the inner space:

∆u = 0 für (x2 + y2 =) r2 < R2 and u(R,ϕ) = u0(ϕ):

Since the solutions should stay bounded : d0 = 0, ck = 0 , ∀k.

We are left with: u(r, ϕ) =
a0
2

+

∞∑
k=1

rk (ak cos(kϕ) + bk sin(kϕ))

Moreover, the boundary condition needs to be fulfilled u(R,ϕ) = u0(ϕ).

We obtain the solution

u(r, ϕ) =
A0

2
+

∞∑
k=1

( r

R

)k

(Ak cos(kϕ) + Bk sin(kϕ))
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where the Fourier coefficients of u0 are

Ak =
1

π

∫ 2π

0

u0(ϕ) cos(kϕ) dϕ

Bk =
1

π

∫ 2π

0

u0(ϕ) sin(kϕ) dϕ
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