Differential Equations II for Engineering Students

Homework sheet 3

Exercise 1:

Compute the solution to the following initial value problem for u(x,t):

$$u_t - \sin(t) u_x = \cos(t), \qquad x \in \mathbb{R}, t \in \mathbb{R}^+,$$
$$u(x, 0) = \exp(-x^2) = e^{-x^2} \qquad x \in \mathbb{R}.$$

- a) First, derive the characteristic differential equations and determine their general solution.
- b) Continue with computing the solutions u(x,t) of the initial value problem.

Exercise 2:

Solve the initial value problem

$$\begin{aligned} u_t + 3u_x + y^2 u_y &= 0, \qquad x, y \in \mathbb{R}, t \in \mathbb{R}^+, \\ u(x, y, 0) &= \frac{\cos(x)}{1 + y^2} \qquad x, y \in \mathbb{R}. \end{aligned}$$

Exercise 3:

Given are the following differential equations for $u(x,t), u: \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$

- A) $u_t + 20 u_x = 21 u$.
- **B)** $u_t + 20u u_x = 21$.
- C) $u_t 5u^2 u_x = 0.$
- **D)** $u_t + 5(x+1)u_x = 0.$

with the initial condition

$$u(x,0) = u_0(x), \qquad x \in \mathbb{R},$$

where $u_0: \mathbb{R} \to \mathbb{R}$ is a monotonically increasing and continuously differentiable function.

For which of the differential equations A, B, C, D do the following statements i) and/or ii) hold for the solution of the associated initial value problem?

i) The solution is constant along the characteristics.

ii) The characteristics are straight lines.

Explain your answers. Note that you don't have to compute any solutions!