Differential Equations II for Engineering Students

Work sheet 2

Exercise 1:

(a) Let $a \neq 0$ be a given constant and $u_{0}: \mathbb{R} \rightarrow \mathbb{R}$ be a continuously differentiable function. Show that

$$
u(t, x)=u_{0}(x-a t),
$$

is a solution of the initial value problem

$$
\left\{\begin{array}{rll}
\frac{\partial u}{\partial t}(t, x)+a \frac{\partial u}{\partial x}(t, x)=0, & \text { if } & (t, x) \in(0, \infty) \times \mathbb{R} \\
u(0, x)=u_{0}(x), & \text { if } & t=0, x \in \mathbb{R}
\end{array}\right.
$$

(b) Find the solutions u and v of the following initial value problems:

$$
\left\{\begin{array}{rll}
\frac{\partial u}{\partial t}(t, x)+\frac{\partial u}{\partial x}(t, x)=0, & \text { if } & (t, x) \in(0, \infty) \times \mathbb{R} \\
u(0, x)=e^{-x^{2}}, & \text { if } & t=0, x \in \mathbb{R}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{rll}
\frac{\partial v}{\partial t}(t, x)+\frac{\partial v}{\partial x}(t, x)=0, & \text { if } & (t, x) \in(0, \infty) \times \mathbb{R} \\
v(0, x)=\sin (\pi x), & \text { if } & t=0, x \in \mathbb{R}
\end{array}\right.
$$

Show that $w=u+v$ is a solution of

$$
\left\{\begin{array}{rll}
\frac{\partial w}{\partial t}(t, x)+\frac{\partial w}{\partial x}(t, x)=0, & \text { if } & (t, x) \in(0, \infty) \times \mathbb{R} \\
w(0, x)=e^{-x^{2}}+\sin (\pi x), & \text { if } & t=0, x \in \mathbb{R}
\end{array}\right.
$$

Exercise 2:

(a) Show that

$$
u(t, x)=\frac{x}{t+1} \quad \text { and } \quad v(t, x)=1 \quad \text { for } \quad(t, x) \in[0, \infty) \times \mathbb{R}
$$

are solutions of the initial value problems

$$
\left\{\begin{array}{rll}
\frac{\partial u}{\partial t}(t, x)+u(t, x) \frac{\partial u}{\partial x}(t, x)=0, & & \text { if } \\
& (t, x) \in(0, \infty) \times \mathbb{R} \\
u(0, x)=x, & & \text { if }
\end{array} \quad t=0, x \in \mathbb{R},\right.
$$

and

$$
\left\{\begin{array}{rll}
\frac{\partial v}{\partial t}(t, x)+v(t, x) \frac{\partial v}{\partial x}(t, x)=0, & & \text { if }
\end{array} \quad(t, x) \in(0, \infty) \times \mathbb{R}, ~(0, x)=1, \quad \text { if } \quad t=0, x \in \mathbb{R} .\right.
$$

(b) Show that $w=u+v$ with u and v from part (a) is not a solution of

$$
\left\{\begin{array}{rll}
\frac{\partial w}{\partial t}(t, x)+w(t, x) \frac{\partial w}{\partial x}(t, x)=0, & \text { if } & (t, x) \in(0, \infty) \times \mathbb{R} \\
w(0, x)=x+1, & \text { if } & t=0, x \in \mathbb{R} .
\end{array}\right.
$$

What is the main difference between the differential equation considered here and the differential equation in problem 1 ?

Exercise 3:

We consider the initial value problem

$$
\begin{aligned}
u_{t t}+u_{x t}-2 u_{x x} & =0, \quad \text { if } x \in \mathbb{R}, t \in \mathbb{R}^{+}, \\
u(x, 0) & =\cos (x), \quad \text { if } x \in \mathbb{R}, \\
u_{t}(x, 0) & =-4 \sin (x), \quad \text { if } x \in \mathbb{R} .
\end{aligned}
$$

Solve the equation by using the substitution

$$
\alpha=x+t, \mu=x-2 t .
$$

