Differential Equations II for Engineering Students

Homework sheet 2

Exercise 1:

During this exercise we consider the differential equations for $u: D \rightarrow \mathbb{R}, D \subset \mathbb{R}^{2}$,

$$
\begin{gather*}
u_{t}(x, t)-\epsilon u_{x x}(x, t)=0, \quad \epsilon \in \mathbb{R}^{+}, \tag{1}\\
u_{t}(x, t)+\left(\frac{(u(x, t))^{2}}{2}\right)_{x}=0, \tag{2}\\
u_{t}(x, t)+\left(\frac{(u(x, t))^{2}}{2}\right)_{x}-\epsilon u_{x x}(x, t)=0, \tag{3}\\
\left(u_{x}(x, y)\right)^{2}-\left(u_{y}(x, y)\right)^{2}-u(x, y)=0 . \tag{4}
\end{gather*}
$$

a) Specify the order of each of the equations and decide whether it is a linear, semilinear, quasilinear or (fully) non-linear equation.
b) Let $u^{[1]}$ and $u^{[2]}$ be two different, non-constant solutions of the above differential equations.

For the equations (1) to (4), check whether $\tilde{u}:=k \cdot u^{[1]}$ is also a solution for any $k \in \mathbb{C}$ (or \mathbb{R}). If yes, check whether $\hat{u}:=u^{[1]}+u^{[2]}$ is a solution of the differential equation, as well.
Note that in this case, every linear combination (any number of) solutions of the differential equation is a solution of the considered differential equation (induction argument).

Exercise 2:

A simple traffic flow model:
We consider a one-dimensional flow of vehicles along an infinitely long, single-lane road. In a so-called macroscopic model, one does not consider individual vehicles, but the total flow of vehicles. For this purpose, we introduce the following quantities:
$u(x, t)=$ (length-)density of the vehicles at the point x at the time t
$=$ vehicles/unit length at point x at the time t
$v(x, t)=$ speed at the point x at the time t
$q(x, t)=u(x, t) \cdot v(x, t)=$ flow
$=$ amount of vehicles passing the point x at the time t per unit time
a) Assume that there are no entrances or exits, no vehicles are disappearing, and no new vehicles are appearing. Let $N(t, a, \Delta a):=$ number of vehicles on a space interval $[a, a+\Delta a]$ at the time t.
Then on the one hand it holds that

$$
N(t, a, \Delta a)=\int_{a}^{a+\Delta a} u(x, t) d x
$$

and on the other hand it also holds

$$
N(t, a, \Delta a)-N\left(t_{0}, a, \Delta a\right)=\int_{t_{0}}^{t} q(a, \tau)-q(a+\Delta a, \tau) d \tau
$$

Derive from this the so-called conservation equation for the mass (number of vehicles)

$$
u_{t}+q_{x}=0 .
$$

Hints on how to proceed:

- Differentiate both formulas for N with respect to t. Please note that for the differentiation of parameter-dependent integrals with sufficiently smooth f holds the Leibniz rule:

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(x, t) d t=\int_{a(x)}^{b(x)} \frac{d}{d x} f(x, t) d t+b^{\prime}(x) f(x, b(x))-a^{\prime}(x) f(x, a(x))
$$

- Divide by Δa.
- Consider the limit $\Delta a \rightarrow 0$.
b) We now assume in a first simple model that the speed increases in inverse proportion to the density and that the density is positive.

$$
v(x, t)=c+\frac{k}{u(x, t)}
$$

What is the continuity equation (=conservation equation for the mass)?

