Differential Equations II for Engineering Students

Homework sheet 1

Exercise 1: (Repetition Analysis II)
For the derivation of parameter-dependent integrals the Leibniz rule

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(x, t) d t=\int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x, t) d t+b^{\prime}(x) f(x, b(x))-a^{\prime}(x) f(x, a(x))
$$

applies if f is sufficiently smooth.
a) Find the derivative of the function $F(x)$

$$
F(x):=\int_{-x}^{x^{2}} e^{x t} d t
$$

(i) by first integrating with respect to t and then deriving with respect to x,
(ii) by first deriving with respect to x and then integrating with respect to t.
b) Compute $\lim _{x \rightarrow 0} F^{\prime}(x)$.

Exercise 2:

The purpose of this exercise is to repeat the differential operators

$$
\operatorname{div}, \quad \operatorname{grad}, \quad \text { rot, } \Delta, \quad \nabla
$$

which are known from Analysis III.
Let $D \subset \mathbb{R}^{3}$ be an open set and $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)^{\top} \in D$. We consider the functions

- $\boldsymbol{f}: D \rightarrow \mathbb{R}^{3}$ mit $\boldsymbol{f}(\boldsymbol{x})=\left(f_{1}(\boldsymbol{x}), f_{2}(\boldsymbol{x}), f_{3}(\boldsymbol{x})\right)^{\top}$,
- $g: D \rightarrow \mathbb{R}$,
where both f and g are \mathcal{C}^{3}-functions.
(a) Indicate which of the following expressions is defined. If it is defined, identify whether the corresponding expression is a vector in \mathbb{R}^{3} or a number in \mathbb{R}.
(i) $\operatorname{div}(\operatorname{grad} f)(\boldsymbol{x})$,
(ii) $\operatorname{grad}(\Delta g)(\boldsymbol{x})$,
(iii) $\operatorname{rot}(\operatorname{div} \boldsymbol{f})(\boldsymbol{x})$,
(iv) $\Delta(\operatorname{div} \boldsymbol{f})(\boldsymbol{x})$.
(b) Show the two equalities

$$
\operatorname{div}(\operatorname{rot} f)(\boldsymbol{x})=0 \quad \text { and } \quad \operatorname{rot}(\nabla g)(\boldsymbol{x})=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

(c) Show the following equality

$$
\nabla(\operatorname{div} \boldsymbol{f})(\boldsymbol{x})-\operatorname{rot}(\operatorname{rot} \boldsymbol{f})(\boldsymbol{x})=\left(\begin{array}{l}
\Delta f_{1}(\boldsymbol{x}) \\
\Delta f_{2}(\boldsymbol{x}) \\
\Delta f_{3}(\boldsymbol{x})
\end{array}\right)
$$

Submission date: 15.-19.04.24

