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Exercise 1: [5 Points]
Given the following initial value problem

ut + t · ux = 1, for x ∈ R, t > 0,

u(x, 0) = cos(x), for x ∈ R.

a) state the characteristic equations for this problem and determine their solutions,

b) solve the initial value problem.

Solution:

a) With the characteristic method, we obtain for

γ(t) =
(

x(t)
t

)
with γ̇(t) =

(
ẋ(t)

1

)
and ν(t) := u(γ(t))
the characteristic equations

ẋ(t) = t, x(0) = x0, und ν̇(t) = 1, ν(0) = ν0.

From the first equation we obtain

x(t) = t2

2 + x0.

Therefore, we obtain with the second equation.

ν(t) = t + ν0

(b) From x = t2

2 + x0 it follows that

x0 = x − t2

2

and with
ν0 = ν(0) = u(x0, 0) = cos(x0),

we obtain
u(x, t) = t + cos

(
x − t2

2

)
.
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Exercise 2: [6 Points]
For u(x, t) the following initial value problem is given:

ut + u · ux = 0, x ∈ R, t ∈ R+

u(x, 0) =


2 x ≤ −2,

0 −2 < x ≤ 1,

−1 1 < x .

a) Determine the physically reasonable solution of the initial value problem for t ∈ [0, t∗ )
with suitably small t∗ .

b) Up to which t∗ does the solution formula from a) make sense?

c) How can the solution be extended for t > t∗ in a physically reasonable way?

Solution:

a) We insert shock waves at the two jump points of the initial data.
The jump condition requires:

ṡ1(t) = 2 + 0
2 = 1 and ṡ2(t) = 0 − 1

2 = −1
2 .

We obtain the shock waves
s1(t) = −2 + t and s2(t) = 1 − t

2 .

For suitably small t the function

u(x, t) =


2 x ≤ −2 + t,

0 −2 + t < x ≤ 1 − t

2 , (3 Points)

−1 1 − t

2 < x .

is a weak solution.

b) For t∗ with

−2 + t∗ = 1 − t∗

2 ⇐⇒ −4 + 2t∗ = 2 − t∗ ⇐⇒ t∗ = 2 (1 Point)

the two shock waves meet and the solution of a) becomes ambiguous.

c) For t∗ = 2 it holds s1(2) = s2(2) = 0 and

u(x, 2) =

2 x ≤ 0 ,

−1 x > 0 .

We insert a new shock font s3 with ṡ3(t) = 2+(−1)
2 = 1

2 .

s3(t) = s3(2) + ṡ3(t)(t − 2) = 0 + t − 2
2

For t > 2 we obtain

u(x, t) =


2 x ≤ t−2

2 ,

−1 x > t−2
2 . (2 Points)
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Exercise 3: [6 Points],
Determine the solution of the following initial boundary value problem:

utt − 9uxx = 0 0 < x < 2 , 0 < t ,

u(x, 0) = 5 sin(2πx) + 7 sin(3πx) 0 ≤ x ≤ 2,

ut(x, 0) = 9 sin(πx) 0 ≤ x ≤ 2,

u(0, t) = 0 0 ≤ t,

u(2, t) = 0 0 ≤ t.

Solution:
With L = 2 and c = +

√
9 the solution formula reads:

u(x, t) =
∞∑

k=1

[
Ak cos

(
ckπ

L
t

)
+ Bk sin

(
ckπ

L
t

)]
sin

(
kπ

L
x

)
.

Thus,

u(x, t) =
∞∑

k=1

[
Ak cos

(
3kπ

2 t

)
+ Bk sin

(
3kπ

2 t

)]
sin

(
kπ

2 x

)
. (1 Point)

Therefore, for t = 0

u(x, 0) =
∞∑

k=1
Ak sin

(
kπ

2 x

)
!= 5 sin(2πx) + 7 sin(3πx).

Thus, A4 = 5, A6 = 7 and Ak = 0 else. (2 Points)
It holds

ut(x, t) =
∞∑

k=1

[
−Ak · 3kπ

2 · sin
(

3kπ

2 t

)
+ Bk · 3kπ

2 · cos
(

3kπ

2 t

)]
sin

(
kπ

2 x

)

and for t = 0 :
ut(x, 0) =

∞∑
k=1

3kπ

2 Bk sin
(

kπ

2 x

)
!= 9 sin(πx).

Comparison of coefficients yields:
Bk = 0, ∀k ̸= 2 ,

3π · B2
!= 9 =⇒ B2 = 3

π
else. (2 Points)

The solution is therefore

u(x, t) = A4 cos
(12π

2 t
)

sin
(4π

2 x
)

+ A6 cos
(18π

2 t
)

sin
(6π

2 x
)

+ B2 sin
(6π

2 t
)

sin
(2π

2 x
)

= 5 cos (6πt) sin (2πx) + 7 cos (9πt) sin (3πx) + 3
π

sin (3πt) sin (πx) . (1 Point)
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Exercise 4: [3 Points]
Let ũ and û be solutions of the differential equation

ut − uxx + u = 2, x ∈ (0, 1), t ∈ R+,

for u(x, t) , which satisfy the boundary conditions

u(0, t) = 0, u(1, t) = sin(t), t ∈ R+.

a) Is ũ + û a solution of the differential equation?
Justify your answer.

b) Does ũ − û solve the following differential equation

ut − uxx + u = 0, x ∈ (0, 1), t ∈ R+,

and satisfy the boundary conditions

u(0, t) = 0, u(1, t) = sin(t), t ∈ R+?

Solution:

a) No. The differential equation is linear but not homogeneous. For v := ũ+û one obtains
vt − vxx + v = (ũt + ût) − (ũxx + ûxx) + ũ + û

= (ũt − ũxx + ũ) + (ût − ûxx + û) = 2 + 2 ̸= 2.

b) No. ũ − û satisfies the homogeneous differential equation (same computation as in a))
but it does not satisfy the boundary conditions:

(ũ − û)(1, t) = ũ(1, t) − û(1, t) = sin(t) − sin(t) = 0.


