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Exercise 1: [5 Points]
Given the following initial value problem

ut + 1
t + 1 · ux = u for x ∈ R, t > 0,

u(x, 0) = e−x for x ∈ R,

a) state the characteristic equations for this problem and determine their solutions,

b) solve the initial value problem.

Solution:

a) With the characteristic method, we compute:

γ(t) =
(

x(t)
t

)
with γ̇(t) =

(
ẋ(t)

1

)
and ν(t) := u(γ(t))
dx
dt

= 1
t+1 =⇒ x(t) = ln(t + 1) + C1.

From x(0) = ln(1) + C1 = C1 it follows that
x(t) = ln(t + 1) + x(0) .
dν
dt

= ν(t) =⇒ ν(t) = C2e
t.

From ν(0) = C2e
0 = C2 we obtain

ν(t) = ν(0)et. [3 Points]

b) From x = ln(t + 1) + x(0) it follows that

x(0) = x(t) − ln(t + 1)

and with
ν0 = ν(0) = u(x0, 0) = e−x0

we obtain
u(x, t) = e−(x−ln(t+1)) · et = (t + 1)et−x.

[2 Points]
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Exercise 2: [4+1 Points]
Given the following initial value problem for u(x, t)

ut + u · ux = 0, x ∈ R, t ∈ R+

u(x, 0) =


2 for x ≤ −1,

0 for − 1 < x ≤ 0,

1 for 0 < x,

a) determine the physically reasonable solution of the initial value problem for 0 < t < 1 .

b) Why does the solution formula from a) only hold for t < 1 ?

Solution:

a) The solution is composed of the solutions of two Riemann problems. We denote the
flow of the Burgers’ equation by F (u) = u2

2 and since 2 > 0 , we first obtain a shock
wave s(t) with

ṡ(t) = F (2) − F (0)
2 − 0 = 1

2(2 + 0) = 1 and s(0) = −1

⇒ s(t) = −1 + t. [2 Points]

Because of 0 < 1 , we obtain a rarefaction wave with boundaries

F ′(0)t = 0, F ′(1)t = t. [1 Point]

Inside the rarefaction wave u has the form

u(x, t) = (F ′)−1
(

x

t

)
= x

t
.

Thus together we have

u(x, t) =


2 for x ≤ −1 + t,
0 for −1 + t < x < 0,
x
t

for 0 ≤ x ≤ t,
1 for t < x.

[1 Point]

b) At time point t = 1 the shock wave meets the rarefaction wave such that the solution
formula from a) no longer holds. [1 Point]
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Exercise 3: [1+2,5+2,5 Points]
Determine the bounded solution of the following boundary value problems for the Laplace
equations: You can give the solutions in cartesian or polar coordinates.

a)
{

∆u = 0 on Ω1 := {
(

x
y

)
∈ R2, x2 + y2 < 25},

u(x, y) = 4 for x2 + y2 = 25.

b)
{

∆u = 0 on Ω1 := {
(

x
y

)
∈ R2, x2 + y2 < 25},

u(x, y) = u(r cos(ϕ), r sin(ϕ)) = 3 sin(2ϕ) for x2 + y2 = 25.

c)


∆u = 0 on Ω2 := {

(
x
y

)
∈ R2, 1 < x2 + y2 < 25}

u(x, y) = 4 for x2 + y2 = 1,
u(x, y) = 2 for x2 + y2 = 25.

Solution: [1+2,5+2,5 Points]

a) The constant function u(x, y) = 4 solves the Laplace equation and in therefore the
unique solution.

b) With x = r cos(ϕ) , y = r sin(ϕ) and v(r, ϕ) = u(r cos(ϕ), r sin(ϕ)) the representation
of the solution is

v(r, φ) = a0 +
∞∑

k=1
(ck cos(kφ) + dk sin(kφ)) rk .

The boundary values give the condition

v(5, φ) = a0 +
∞∑

k=1
(ck cos(kφ) + dk sin(kφ)) 5k

= 3 sin(2φ) .

Comparison of coefficients gives 25d2
!= 3 and that every other coefficient is 0 .

Thus, we obtain the solution

v(r, ϕ) = 3r2

25 sin(2ϕ) .

A representation with respect to the cartesian coordinates is not required. If someone
is doing it anyway, they should obtain

u(x, y) = 6(x2 + y2)
25 · x√

x2 + y2 · y√
x2 + y2)

= 6xy

25 .

c) Since (0, 0)⊤ /∈ Ω2 , it holds with the fundamental solution
Φ(x, y) = 1

2π
ln(|(x, y)|) = 1

2π
ln(

√
x2 + y2) that

u(x, y) = aΦ(x, y) + b.
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From the boundary values we obtain
a

2π
ln(1) + b = b

!= 4
a

2π
ln(5) + 4 != 2 ⇒ a = −4π

ln(5) ,

thus, u(x, y) = 4 − 4π
ln(5) · 1

2π
ln(

√
x2 + y2) = 4 − 2

ln(5) ln(
√

x2 + y2).
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Exercise 4: [3+1 Points]
Given the following initial boundary value problem

ut − 16uxx = 4 cos(t)
(
1 − x

2π

)
for x ∈ (0, 2π), t > 0,

u(x, 0) = x

2π
for x ∈ [0, 2π],

u(0, t) = 4 sin(t), u(2π, t) = 1 for t > 0.

a) transfer this problem into an initial boundary value problem with homogeneous boun-
dary data for a function v(x, t) via a suitable homogenization.
Write down the new initial boundary value problem (differential equartion, initial va-
lues, boundary values).

b) Write down a solution v for the initial boundary value problem with homegeneous
boundary data from part a) without any computations. What is the corresponding
solution u of the originial problem?

Solution:

a) Homogenization:

v(x, t) = u(x, t) −
[
4 sin(t) + x

2π
(1 − 4 sin(t))

]
= u(x, t) − x

2π
+ 4 sin(t)( x

2π
− 1) .

or
u(x, t) = v(x, t) + x

2π
− 4 sin(t)( x

2π
− 1) . [1 Point]

Then it holds:
ut = vt − 4 cos(t)( x

2π
− 1),

New differential equation:
vt + 4 cos(t)(1 − x

2π
) − 16vxx = 4 cos(t)(1 − x

2π
) ⇐⇒ vt − 16vxx = 0.

Initial values:
v(x, 0) = u(x, 0) − x

2π
+ 4 sin(0)( x

2π
− 1) = x

2π
− x

2π
= 0. [2 Points]

Boundary values:
v(0, t) = u(0, t) −

[
4 sin(t) + 0

2π
(1 − 4 sin(t))

]
= 4 sin(t) − 4 sin(t) = 0.

v(2π, t) = u(2π, t) −
[
4 sin(t) + 2π

2π
(1 − 4 sin(t))

]
= 1 − [4 sin(t) + 1 − 4 sin(t)] = 0.

b) Since the differential equation is homogeneous with vanishing initial and boundary
dara, v ≡ 0 is the solution. Hence,
u(x, t) = 0 + x

2π
− 4 sin(t)( x

2π
− 1) . [1 Point]


