# Differential Equations II for Engineering Students

## Work sheet 7

#### Exercise 1:

a) Given the initial boundary value problem

$$u_{tt} - 4u_{xx} = -x \cdot \sin(t)$$
 for  $x \in (0, 1), t > 0$ ,  
 $u(x, 0) = 1 - x + 4\sin(2\pi x)$  for  $x \in [0, 1]$ ,  
 $u_t(x, 0) = x + 3\sin(6\pi x)$  for  $x \in [0, 1]$ ,  
 $u(0, t) = 1$ ,  $u(1, t) = \sin(t)$  for  $t > 0$ .

Transform the problem using suitable homogenization of the boundary data into an initial boundary value problem with homogeneous boundary data.

b) Solve the following initial boundary value problem

$$v_{tt} - 4v_{xx} = 0$$
 for  $x \in (0, 1), t > 0$ ,  
 $v(x, 0) = 4\sin(2\pi x)$  for  $x \in [0, 1]$ ,  
 $v_t(x, 0) = 3\sin(6\pi x)$  for  $x \in [0, 1]$ ,  
 $v(0, t) = 0$ ,  $v(1, t) = 0$  for  $t > 0$ .

## Solution sketch:

a) Homogenization:

$$v(x,t) = u(x,t) - 1 - \frac{x}{L}(\sin(t) - 1) = u(x,t) - 1 - x\sin(t) + x.$$
 or 
$$u(x,t) = v(x,t) + 1 + x\sin(t) - x. \qquad [1 \text{ point}]$$
 Then it holds: 
$$u_t = v_t + x\cos(t), \ u_x = v_x + \sin(t) - 1$$
 
$$u_{tt} = v_{tt} - x\sin(t), \ v_{xx} = u_{xx} \qquad [1 \text{ point}]$$
 New differential equation: 
$$v_{tt} - x\sin(t) - 4v_{xx} = -x \cdot \sin(t) \iff v_{tt} - 4v_{xx} = 0. \qquad [1 \text{ point}]$$
 Initial data: 
$$v(x,0) = u(x,0) - 1 - x(\sin(0) - 1) = 1 - x + 4\sin(2\pi x) - 1 + x \implies v(x,0) = 4\sin(2\pi x) \qquad [1 \text{ point}]$$
 
$$v_t(x,0) = u_t(x,0) - x\cos(0) = x + 3\sin(6\pi x) - x \implies v_t(x,0) = 3\sin(6\pi x) \qquad [1 \text{ point}]$$
 Boundary data: 
$$v(0,t) = v(1,t) = 0$$

b) With L=1 and  $c^2=4$  we have a solution formula:

$$v(x,t) = \sum_{k=1}^{\infty} \left[ A_k \cos\left(\frac{ck\pi}{L}t\right) + B_k \sin\left(\frac{ck\pi}{L}t\right) \right] \sin\left(\frac{k\pi}{L}x\right)$$

So for t = 0 we have

$$v(x,0) = \sum_{k=1}^{\infty} A_k \sin(k\pi x) \stackrel{!}{=} 4\sin(2\pi x)$$

Also  $A_2 = 4$  and  $A_k = 0$  else. [2 points]

$$v_t(x,t) = \sum_{k=1}^{\infty} \left[ -A_k \cdot 2k\pi \cdot \sin(2k\pi t) + B_k \cdot 2k\pi \cdot \cos(2k\pi t) \right] \sin(k\pi x)$$

and for t = 0:

$$v_t(x,t) = \sum_{k=1}^{\infty} B_k \cdot 2k\pi \sin(k\pi x) \stackrel{!}{=} 3\sin(6\pi x)$$

Also  $B_6 = \frac{3}{2 \cdot 6 \cdot \pi} = \frac{1}{4\pi}$  and  $B_k = 0$  else.

$$v(x,t) = 4\cos(4\pi t)\sin(2\pi x) + \frac{1}{4\pi}\sin(12\pi t)\sin(6\pi x)$$
 [2 points]

### Exercise 2:

From lecture classes you know d'Alembert's formula

$$\hat{u}(x,t) = \frac{1}{2} (f(x+ct) + f(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} g(\alpha) d\alpha$$

for the solution of the initial value problem for the (homogeneous) wave equation

$$\hat{u}_{tt} - c^2 \hat{u}_{xx} = 0, \ \hat{u}(x,0) = f(x), \ \hat{u}_t(x,0) = g(x), \ x \in \mathbb{R}, \ c > 0.$$

a) (Just for the really quick participants) Show that the function

$$\tilde{u}(x,t) = \frac{1}{2c} \int_0^t \int_{x+c(\tau-t)}^{x-c(\tau-t)} h(\omega,\tau) d\omega d\tau$$

solves the following inhomogeneous initial value problem.

$$\tilde{u}_{tt} - c^2 \tilde{u}_{xx} = h(x, t)$$
  $\tilde{u}(x, 0) = \tilde{u}_t(x, 0) = 0.$ 

Hint: Leibniz formula for the derivation of parameter-dependent integrals (Sheet 1H):

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,t) dt = \int_{a(x)}^{b(x)} \frac{d}{dx} f(x,t) dt + b'(x) f(x,b(x)) - a'(x) f(x,a(x))$$

b) Solve the initial value problem

$$u_{tt} - 4u_{xx} = -4x, x \in \mathbb{R}, t > 0$$

$$u(x,0) = 1, x \in \mathbb{R},$$

$$u_t(x,0) = \cos(x), x \in \mathbb{R}$$

$$(1)$$

(i) Compute a solution  $\hat{u}$  of the initial value problem

$$\hat{u}_{tt} - 4\hat{u}_{xx} = 0, \qquad x \in \mathbb{R}, t > 0$$

$$\hat{u}(x,0) = 1, x \in \mathbb{R},$$

$$\hat{u}_t(x,0) = \cos(x), x \in \mathbb{R}.$$

(ii) Compute a solution  $\tilde{u}$  of the initial value problem using the result from part a).

$$\tilde{u}_{tt} - 4\tilde{u}_{xx} = -4x,$$
  $x \in \mathbb{R}, t > 0$   
 $\tilde{u}(x,0) = 0, x \in \mathbb{R},$   $\tilde{u}_t(x,0) = 0, x \in \mathbb{R}$ 

(iii) By inserting u into the differential equation and checking the initial values, show that  $u = \tilde{u} + \hat{u}$  solves the initial value problem (1).

Solution:

a) 
$$\tilde{u}_{x}(x,t) = \frac{1}{2c} \int_{0}^{t} \left[ h(x - c(\tau - t), \tau) - h(x + c(\tau - t), \tau) \right] d\tau$$

$$\tilde{u}_{xx}(x,t) = \frac{1}{2c} \int_{0}^{t} \left[ h_{\omega}(x - c(\tau - t), \tau) - h_{\omega}(x + c(\tau - t), \tau) \right] d\tau$$

$$\tilde{u}_{t}(x,t) = \frac{1}{2c} \int_{x+c(t-t)}^{x-c(t-t)} h(\omega,t) d\omega$$

$$+ \frac{1}{2c} \int_{0}^{t} \left[ h(x - c(\tau - t), \tau) \cdot c - h(x + c(\tau - t), \tau) \cdot (-c) \right] d\tau$$

$$= \frac{1}{2} \int_{0}^{t} \left[ h(x - c(\tau - t), \tau) + h(x + c(\tau - t), \tau) \right] d\tau$$

$$\tilde{u}_{tt}(x,t) = \frac{1}{2} \left\{ h(x,t) + h(x,t) + \int_0^t \left[ h_{\omega}(x - c(\tau - t), \tau) \cdot c + h_{\omega}(x + c(\tau - t), \tau)(-c) \right] d\tau \right\}$$

$$= h(x,t) + \frac{c}{2} \int_0^t \left[ h_{\omega}(x - c(\tau - t), \tau) - h_{\omega}(x + c(\tau - t), \tau) \right] d\tau$$

Obviously it holds  $\tilde{u}_{tt} - c^2 \tilde{u}_{xx} = h(x,t)$  . For initial values one obtains

$$\tilde{u}(x,0) = \frac{1}{2c} \int_0^0 \cdots = 0,$$

and

$$\tilde{u}_t(x,0) = \frac{1}{2} \int_0^0 \cdots = 0.$$

b) (i) Solution to a homogeneous differential equation with inhomogeneous initial values according to d'Alembert

$$\hat{u}(x,t) = \frac{1}{2} (1+1) + \frac{1}{2c} \int_{x-ct}^{x+ct} \cos(\eta) d\eta$$
$$= 1 + \frac{1}{4} (\sin(x+2t) - \sin(x-2t))$$
$$= 1 + \frac{1}{2} \cos(x) \sin(2t)$$

(ii) Solution of a inhomogeneous differential equation with homogeneous initial values

$$\tilde{u}(x,t) = \frac{1}{2c} \int_0^t \int_{x+c(\tau-t)}^{x-c(\tau-t)} -4\omega \, d\omega d\tau = \frac{-4}{8} \int_0^t \left[ (x-2(\tau-t))^2 - (x+2(\tau-t))^2 \right] d\tau$$
$$= \frac{1}{2} \int_0^t 8x(\tau-t) d\tau = -2xt^2.$$

(iii) The solution to the original problem consists of the two partial solutions:

$$u(x,t) = 1 + \frac{1}{2}\cos(x)\sin(2t) - 2xt^2$$

Test:

$$\begin{split} u(x,0) &= 1, \ u_t(x,t) = \cos(x)\cos(2t) - 4xt, \ u_t(x,0) = \cos(x), \\ u_x &= -\frac{1}{2}\sin(x)\sin(2t) - 2t^2, \ u_{xx} = -\frac{1}{2}\cos(x)\sin(2t), \\ u_{tt} &= -2\cos(x)\sin(2t) - 4x \ . \\ u_{tt} - 4u_{xx} &= -2\cos(x)\sin(2t) - 4x - 4(-\frac{1}{2}\cos(x)\sin(2t)) = -4x \ . \end{split}$$

Discussion: 10.07 - 14.07.2023