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Exercise 1:

a) We are looking for a solution of the Laplace equation Av(z,y) = 0 in a rotationally
symmetric area, for example in a circle. The area can then be better described using
polar coordinates. This is done as follows

r=rcos¢, y=rsin¢, and

v(x(r,¢),y(r,9)) = u(r,¢) .

Show that for r # 0 the following equivalence holds:

7’2urr+7’uT+uW:O e TQ(U11+Uyy) =0.

b) Find a solution to the following boundary value problem:
A(w)=0 firl<az®+1y?<4,
v(z,y) =1 auf2®+y* =1,
v(z,y) =2 auf 2° +y* = 4.

Hint: Use polar coordinates. The boundary data are independent of ¢. So try the
ansatz

v(w,y) = u(r, ¢) = w(r).

Solution:

a)
Up = Vg - Tp + Uy - Yp = €OS(0)v, + sin(¢)v,
Up = Uy - Ty + Uy - Yp = —rsin(@)v, + 1 cos(P)vy,
Upp = Vyp COS> () + 20y, cos(¢) sin(¢) + vy, sin®(¢)
Ups = Vppt? SIN*(P) + 20,77 cos(P)(— sin(¢)) + vy, r* cos?(¢) — r cos(¢)v, — rsin(¢)v,
Plug into the differential equation
72Uy 4 Ty + Uy = (1% cos? (@) + 172 sin (@) ) Vay
+ (2r% cos(¢) sin(¢) — 2r? cos(¢) sin(¢))) v,
+ (r? sin® (@) + 1% cos?(¢))vy,
+ rcos(¢)v, + rsin(¢)v, — rcos(p)v, — rsin(g)v,

= rz(vm + vyy) -
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b) We not just go over to polar coordinates, but because of the nature of the boundary

conditions we make the ansatz v(z,y) = u(r,¢) = w(r). From part a) we obtain the
differential equation

]‘ " 1 /
ur,.+;u,.+ﬁu¢,¢,:w —i—;w =0.
So we have an ordinary first order differntial equation for ¢ := w’.
g(r)=—19(r) = €= —% = In(lgl]) = —In(|r]) + &
= g(r) = - w'(r) . From this we get
r
u(r,¢) = w(r) = cln(r) 4+ d.

From boundary data we get

u(l,90) =1 = cln(l)+d=1 = d=1.

u(2,0) =2 = cln(2)+1=2 = c¢= IHEZ)
1

u(r, @) :ln(2) In(r) + 1.

o(z,y) _lnvet+y? + 1.

In(2)
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Exercise 2:

0 for k € N even,
a) Show that through ap = 0,Vk € Ny, [ = 8
(k)3

for k € N odd

the Fourier coefficients of the Fourier series

% Z ay cos(kmy) + By sin(kmy))

of the odd, 2—periodic continuation of

gly)=y*—y, 0<y<1

are given.

b) Determine with the help of an appropriate product ansatz and by using a) the solution
of the following boundary value problem

Au(z, y)—O z € (0,1), y € (0,1),
u(z,0) = z €0,1],
u(x,l)zO z e [0,1],
u0,y) =9(y) =y* —y y €[0,1],
u(l,y) =0 y € [0,1].

Solution:

a) We have that a; = 0, since the continued function is odd. For (5 one gets
' ; — cos(kmy) |’ ! cos(kmy
B = 2/ (y* — y) sin(kmy)dy = 2 [(?ﬁ - y)()] + 2/ 2y — 1) costkmy)
0 km 0 0 km

_ ljr l(zy—1)5“1§f:3/)]0_4/1 sin(hmy)

km Jo km
o [cos(/my)] 1 - 0 . for k£ even
(km)? ko], RSE for k odd

b) Inserting the product ansatz u(z,y) = v(x)w(y) in the differential equation gives

,U// w//

V'(z)w(y) vz’ (y) =0 = — =——= )\ A constant .
v w
The boundary values u(z,0) and u(z,1) =0 give w(0) = w(1l) = 0. The solutions

to the eigenvalue problem
2

w’' = - w, w(0) =w(l) =0

are according to sheet 1, classroom exercise 1
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wi(y) = cpsin(kmy),  where A\, = k*72

"
The second differential equation — = k272 has the solutions
v

vp(z) = e + e k.

Every function wug(x,y) = wvp(z) - wi(y) solves the linear differential equation and
thus also every finite linear combination of these solutions. Without discussing the
convergence, we make the ansatz

U(xa y) = Z Sin(/{:ﬂ'y) (dkekﬂm + Bke_kﬂz) ‘
k=1

From the not yet used boundary condition u(1l,y) = v(1)w(y) =0 it follows
dkek” + Bke"m =0 <= Z;k = —&ke%”

and hence
oo

Z Qg sin k’/Ty ( kmr €2k7r 6714371'93) ]

The last boundary condition is:
u(0,y) = Y aysin(kmy) (1 - e%”) =y —y.
k=1

With the Fourier coefficients (3, of the function y? —y when expanding according to
the functions sin(kmy) from part a) it holds

Br = ax (1 — 62’”)

or

B
k= 1 — 62k7r :

and hence

u(e,y) = 30 1P sin(lmy) (¢4 — 2 )

_ S Bk sin(knr ekwxflwr o e*kﬂ'erkﬂ' ]
> i g sin(kmy)

SlIl kr ekm(:c—l) _ e—kw(:v—l) )
Z (ky)

Those who prefer to work with the hyperbolic functions get

Z — smh e (o) sin(kmy) - sinh(km(x — 1)).

k=1



