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Exercise 1:
Determine the solutions to the following initial value problems for t ∈ R+, x ∈ R .

a) ut + 3ux = 0 with u(x, 0) = u0(x) = xe−x.

b) 2ut + x2ux = 1
u

with u(x, 0) = 2
√

e−4x2 .

Does there exist a solution for all t ∈ R+, x ∈ R ?
If not, can the solution be continuously extended in the definition gaps (to be defined
in the whole domain)?

Solution:

a) ut + 3ux = 0 with u(x, 0) = xe−x.

On a fixed characteristic (t, x(t)) we have:
ẋ(t) = 3 =⇒ x(t) = c + 3t, x(0) = c = x0 = x − 3t .
u̇(t) = 0 =⇒ u is constant on the characteristic!

So

=⇒

u(x, t) = u(x0, 0) = u(x − 3t, 0) = u0(x − 3t)
u(x, 0) = xe−x

=⇒ u(x, t) = (x − 3t)e−(x−3t)

b) For x = 0 one gets an ordinary differential equation 2ut = 1
u

with the solution
u(0, t) =

√
t + C . Using initial value we get C = 4 . For x ̸= 0 we compute as follows

dx

dt
= x2

2
dx

x2 = dt

2 −1
x

= t

2 − C1 C1 = t

2 + 1
x

du

dt
= 1

2u
2u · du = dt u2 = t + C2 C2 = u2 − t

C2 = f(C1) ⇐⇒ u2 − t = f( t

2 + 1
x

)
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From the initial data follows

(u(x, 0))2 − 0 = 4 e−4x2 = f( 1
x

) .

So
f(y) = 4 e−4(1/y)2 =⇒ u2 = t + 4 exp

(
−4( t

2 + 1
x

)−2
)

u(x, t) =

√√√√t + 4 exp
(

−4( (2x)2

(tx + 2)2

)
=
√

t + 4e
−16x2

(tx+2)2 .

The soltuion is not defined for x(t) = −2/t . For every fixed t ∈ R+ it holds x2 =
4/t2 ̸= 0 and

lim
x→−2/t

−16x2

(tx + 2)2 = −∞ =⇒ lim
x→−2/t

e
−16x2

(tx+2)2 = 0

and hence
lim

x→−2/t
u(x, t) =

√
t .
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Exercise 2:
A simple traffic flow model:
We consider a one-dimensional flow of vehicles along an infinitely long, single-lane road. In
a so-called macroscopic model, one does not consider individual vehicles, but the total flow
of vehicles. For this purpose, we introduce the following quantities:
u(x, t) = (length-)density of the vehicles at the point x at the time t

= vehicles/unit length at point x at the time t

v(x, t) = speed at the point x at the time t,

q(x, t) = u(x, t) · v(x, t) = flow
= amount of vehicles passing the point x at the time t per unit time

a) Assume that there are no entrances or exits, no vehicles are disappearing, and no
new vehicles are appearing. Let N(t, a, ∆a) := number of vehicles on a space interval
[a, a + ∆a] at the time t .
Then on the one hand it holds that

N(t, a, ∆a) =
∫ a+∆a

a
u(x, t) dx

and on the other hand it also holds

N(t, a, ∆a) − N(t0, a, ∆a) =
∫ t

t0
q(a, τ) − q(a + ∆a, τ)dτ .

Derive from this the so-called conservation equation for the mass (number of vehicles)

ut + qx = 0.

Hints on how to proceed:

• Derive both formulas for N with respect to t . Please note that for the derivation
of parameter-dependent integrals with sufficiently smooth f holds the Leibniz
rule:

d

dx

∫ b(x)

a(x)
f(x, t) dt =

∫ b(x)

a(x)

d

dx
f(x, t)dt + b′(x) f(x, b(x)) − a′(x) f(x, a(x))

• Divide by ∆a .
• Consider the limit ∆a → 0 .

b) Additionally assume that the velocity depends only on the density:
v = v(u) . Show that in this case the equation

∂u

∂t
+ dq

du
· ∂u

∂x
= 0

describes the conservation of mass.
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c) We now assume in a first simple model that the speed increases in inverse proportion
to the density and that the density is positive.

v(x, t) = c + k

u(x, t)

What is the continuity equation (=conservation equation for the mass)?

Solution:

a) On the one hand, it holds N(t) =
∫ a+∆a

a
u(x, t) dx

and on the other hand N(t) − N(t0) =
∫ t

t0
q(a, τ) − q(a + ∆a, τ)dτ .

Differentiating with respect to t gives
∂

∂t
N(t) = ∂

∂t

∫ a+∆a

a
u(x, t) dx = q(a, t) − q(a + ∆a, t)

Letting ∆a to zero, and with sufficient smoothness of the functions, we have

lim
∆a→0

1
∆a

∫ a+∆a

a

∂

∂t
u(x, t) dx = lim

∆a→0
−q(a + ∆a, t) − q(a, t)

∆a

=⇒ ∂

∂t
u(a, t) = − ∂

∂a
q(a, t).

Since these considerations hold at every point, we have the continuity equation
ut + qx = 0 .

b) Actually is straightforward, since in this case we have q(x, t) = u(x, t) ·v(u(x, t)) . The
flow q is therefore a function of u(x, t) . The assertion then follows from the chain
rule.
In more details:
With q(x, t) = u(x, t) · v(u(x, t)) we have
dq

du
· ∂u

∂x
= d

du
(u · v(u)) · ux = (v(u) + u · vu) · ux

and on the other hand it holds
∂

∂x
q(x, t) = ∂

∂x
(u(x, t) · v(u(x, t))) = ux · v(u) + u · vu · ux .
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c)
v(x, t) = c + k

u(x, t) q(x, t) = c · u(x, t) + k

From the continuity equation from part b) we have

∂u

∂t
+ dq

du
· ∂u

∂x
= ∂u

∂t
+ c · ∂u

∂x
= 0

The linear transport equation is thus obtained.
For c = 3 the equation is solved in Exercise 1a).

Note : This is a very simple, linearized model. For example, it allows for any density
and any speed. A somewhat more realistic problem would already produce shock and
rarefaction waves (see later exercises).
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