Differential Equations II for Engineering Students

Work sheet 7

Exercise 1:

a) Given the initial boundary value problem

$$u_{tt} - 4u_{xx} = -x \cdot \sin(t)$$
 for $x \in (0, 1), t > 0$,
 $u(x, 0) = 1 - x + 4\sin(2\pi x)$ for $x \in [0, 1]$,
 $u_t(x, 0) = x + 3\sin(6\pi x)$ for $x \in [0, 1]$,
 $u(0, t) = 1$, $u(1, t) = \sin(t)$ for $t > 0$.

Transform the problem using suitable homogenization of the boundary data into an initial boundary value problem with homogeneous boundary data.

b) Solve the following initial boundary value problem

$$v_{tt} - 4v_{xx} = 0$$
 for $x \in (0, 1), t > 0$,
 $v(x, 0) = 4\sin(2\pi x)$ for $x \in [0, 1]$,
 $v_t(x, 0) = 3\sin(6\pi x)$ for $x \in [0, 1]$,
 $v(0, t) = 0$, $v(1, t) = 0$ for $t > 0$.

Exercise 2:

From lecture classes you know d'Alembert's formula

$$\hat{u}(x,t) = \frac{1}{2} \left(f(x+ct) + f(x-ct) \right) + \frac{1}{2c} \int_{x-ct}^{x+ct} g(\alpha) d\alpha$$

for the solution of the initial value problem for the (homogeneous) wave equation

$$\hat{u}_{tt} - c^2 \hat{u}_{xx} = 0, \ \hat{u}(x,0) = f(x), \ \hat{u}_t(x,0) = g(x), \ x \in \mathbb{R}, \ c > 0.$$

a) (Just for the really quick participants) Show that the function

$$\tilde{u}(x,t) = \frac{1}{2c} \int_0^t \int_{x+c(\tau-t)}^{x-c(\tau-t)} h(\omega,\tau) d\omega d\tau$$

solves the following inhomogeneous initial value problem.

$$\tilde{u}_{tt} - c^2 \tilde{u}_{xx} = h(x,t)$$
 $\tilde{u}(x,0) = \tilde{u}_t(x,0) = 0.$

Hint: Leibniz formula for the derivation of parameter-dependent integrals (Sheet 1H):

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x,t) dt = \int_{a(x)}^{b(x)} \frac{d}{dx} f(x,t) dt + b'(x) f(x,b(x)) - a'(x) f(x,a(x))$$

b) Solve the initial value problem

$$u_{tt} - 4u_{xx} = -4x, x \in \mathbb{R}, t > 0$$

$$u(x,0) = 1, x \in \mathbb{R},$$

$$u_t(x,0) = \cos(x), x \in \mathbb{R}$$

$$(1)$$

(i) Compute a solution \hat{u} of the initial value problem

$$\hat{u}_{tt} - 4\hat{u}_{xx} = 0, \qquad x \in \mathbb{R}, \ t > 0$$

$$\hat{u}(x,0) = 1, \ x \in \mathbb{R},$$

$$\hat{u}_t(x,0) = \cos(x), \ x \in \mathbb{R}.$$

(ii) Compute a solution \tilde{u} of the initial value problem using the result from part a).

$$\tilde{u}_{tt} - 4\tilde{u}_{xx} = -4x,$$
 $x \in \mathbb{R}, t > 0$
 $\tilde{u}(x,0) = 0, x \in \mathbb{R},$ $\tilde{u}_t(x,0) = 0, x \in \mathbb{R}$

(iii) By inserting u into the differential equation and checking the initial values, show that $u = \tilde{u} + \hat{u}$ solves the initial value problem (1).

Discussion: 10.07 - 14.07.2023