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Exercise 1: [7 points]
Consider the following initial value problem for u(x, t) :

ut + u · ux = 0, x ∈ R, t ∈ R+

u(x, 0) =


4 x ≤ −1,

0 −1 < x ≤ 0,

−4 0 < x .

a) Determine the entropy solution for t ∈ [0, t∗ ) with a sufficiently
small t∗ .

b) Up to which t∗ can the solution from a) be continued at most?

c) Determine the entropy solution for t > t∗ .

Solution:

a) At two discontinuities of the initial data, we introduce two shock waves.
The jump condition requires:

ṡ1(t) = 4 + 0
2 = 2 and ṡ2(t) = 0 − 4

2 = −2 .

We get shock fronts
s1(t) = −1 + 2t and s2(t) = −2t .

For sufficiently small t we have

u(x, t) =


4 x ≤ −1 + 2t,

0 −1 + 2t < x ≤ −2t, (3 points)
−4 −2t < x .

is a weak solution.

b) For t∗ with
−1 + 2t∗ = −2t∗ ⇐⇒ 4t∗ = 1 ⇐⇒ t∗ = 1

4 (1 point)
the shock fronts meet and the solution from a) becomes ambiguous.

c) For t∗ = 1
4 it holds s1(t) = s2(t) = −1

2 and

u(x,
1
4) =

4 x ≤ −1
2 ,

−4 x > −1
2 .

We create a new shock front s3 with ṡ3(t) = 4+(−4)
2 = 0 .

s3(t) = −1
2 + ṡ3(t)(t − 1

4) = −1
2

For t > 1
4 it holds

u(x, t) =


4 x ≤ −1

2 ,

−4 x > −1
2 . (3 points)
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Exercise 2: [3 points]
Given is the following differential equation for u(x, y) :

x · uxx − (x + y)uxy + y · uyy = 0.

Provide the order of the differential equation and determine the type of the differential
equation (elliptic, parabolic or hyperbolic) at the points(

x1
y1

)
=
(

1
1

)
and

(
x2
y2

)
=
(

1
−1

)
.

Solution:
The differential equation is of order two.
A type is obtained from the sign of

D(x, y) = x · y − (x+y)2

22 = − x2 − 2xy + y2

4 = −
(

x−y
2

)2
. (1 point)

A differential equation is


elliptic if D(x, y) > 0,

parabolic if D(x, y) = 0,

hyperbolic if D(x, y) < 0.

D(1, 1) = 1 · 1 − (1+1)2

22 = 0 =⇒ The differential equation is

at
(

x1
y1

)
=
(

1
1

)
parabolic.

D(1, −1) = 1 · (−1) − (1−1)2

22 = −1 =⇒ The differential equation is at
(

x2
y2

)
=
(

1
−1

)
hyper-

bolic.
(2 points)
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Exercise 3: [4 points]

Let u be a harmonic function in the disc Ω := {
(

x
y

)
∈ R2 : x2 + y2 < 25} with given values

g(x, y) on the boundary of the disc:

∆u(x, y) = 0 for
(

x

y

)
∈ R2 : x2 + y2 < 25

u(x, y) = g(x, y) for
(

x

y

)
∈ R2 : x2 + y2 = 25.

In the following two cases one can find solutions without long calculations. Give a solution
for each case. Justify your answers.

a) g(x, y) = x + y + 18
9 .

b) g(x, y) = 2x2 + 2y2 .

Solution:

a) The function u(x, y) = x + y + 18
9 = g(x, y) solves the potential equation in the

whole disc. Because of the uniqueness of the solution, u(x, y) = x + y + 18
9 is a

unique solution in Ω .
(2 points)

b) g(x, y) = 2x2 + 2y2 = 2(x2 + y2) is on the boundary ∂Ω constantly equal 50.
So u(x, y) is constant on the boundary of Ω . Since the maximum and minimum of u
in Ω̄ are attained on the boundary, u in the whole disc is constant and u(x, y) = 50
.

(2 points)
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Exercise 4: [6 points]
Determine the solution to the initial boundary value problem

utt − 36uxx = 0 0 < x < 2π , 0 < t ,

u(x, 0) = 20 sin(3
2x) 0 ≤ x ≤ 2π,

ut(x, 0) = 24 sin(3x) 0 ≤ x ≤ 2π,

u(0, t) = 0 0 ≤ t,

u(2π, t) = 0 0 ≤ t.

Solution:
With L = 2π and c2 = +

√
36 the solution formula is:

u(x, t) =
∞∑

k=1

[
Ak cos

(
ckπ

L
t

)
+ Bk sin

(
ckπ

L
t

)]
sin

(
kπ

L
x

)

So
u(x, t) =

∞∑
k=1

[Ak cos (3kt) + Bk sin (3kt)] sin
(

k

2x

)
. (1 point)

For t = 0 we have
u(x, 0) =

∞∑
k=1

Ak sin
(

k

2x

)
!= 20 sin(3

2x)

Hence A3 = 20 and Ak = 0 else. (2 points)

ut(x, t) =
∞∑

k=1
[−Ak · 3k · sin (3kt) + Bk · 3k · cos (3kt)] sin

(
k

2x

)
and for t = 0 :

ut(x, t) =
∞∑

k=1
3kBk sin

(
k

2x

)
!= 24 sin(3πx)

So 3 · 6 · B6
!= 24 and Bk = 0 else. (2 points)

u(x, t) = A3 cos (3 · 3t) sin
(3

2x
)

+ B6 sin (3 · 6t) sin
(6

2x
)

= 20 cos (9t) sin
(3

2x
)

+ 4
3 sin (18t) sin(3x) (1 point)


