Differential Equations II for Engineering Students Work sheet 7

Exercise 1:

Given the following initial boundary value problem for $u=u(x, t)$:

$$
\begin{array}{ll}
u_{t t}-4 u_{x x}=e^{-t}\left(1-\frac{x}{3}\right) & x \in(0,3), t>0, \\
u(x, 0)=1+2 \sin (\pi x) & x \in[0,3], \\
u_{t}(x, 0)=\frac{x}{3} & x \in(0,3), \tag{1}\\
u(0, t)=e^{-t} & t \geq 0, \\
u(3, t)=1 & t \geq 0 .
\end{array}
$$

a) Show that the homogenization of the boundary data according to

$$
v=u-e^{-t}-\frac{x}{3}\left(1-e^{-t}\right)
$$

leads to the following initial boundary value problem for v :

$$
\begin{array}{ll}
v_{t t}-4 v_{x x}=0 & x \in(0,3), t>0, \\
v(x, 0)=2 \sin (\pi x) & x \in[0,3], \\
v_{t}(x, 0)=1 & x \in(0,3), \tag{2}\\
v(0, t)=0 & t \geq 0, \\
v(3, t)=0 & t \geq 0 .
\end{array}
$$

b) Solve the initial boundary value problem (2) from part a) and compute the solution to the initial boundary value problem (1).

Solution:

a) With $v=u-e^{-t}-\frac{x}{3}\left(1-e^{-t}\right) \quad$ it holds

$$
u_{t}=v_{t}-e^{-t}\left(1-\frac{x}{3}\right), \quad u_{t t}=v_{t t}+e^{-t}\left(1-\frac{x}{3}\right), \quad v_{x x}=u_{x x} .
$$

New differential equation:

$$
v_{t t}+e^{-t}\left(1-\frac{x}{3}\right)-4 v_{x x}=e^{-t}\left(1-\frac{x}{3}\right) \Longleftrightarrow v_{t t}-4 v_{x x}=0
$$

New initial and boundary values:

$$
\begin{aligned}
& v(x, 0)=u(x, 0)-e^{0}-\frac{x}{3}\left(1-e^{0}\right)=1+2 \sin (\pi x)-1=2 \sin (\pi x), \\
& v_{t}(x, 0)=u_{t}(x, 0)+e^{0}-\frac{x}{3} \cdot e^{0}=1, \\
& v(0, t)=v(3, t)=0 .
\end{aligned}
$$

b) Every function
$v(x, t)=\sum_{k=1}^{n}\left(A_{k} \cos (c k \omega t)+B_{k} \sin (c k \omega t)\right) \cdot \sin (k \omega x) \quad \omega=\frac{\pi}{l}$
with $c=2, \omega=\frac{\pi}{3}$.
fulfills the boundary conditions and the differential equation.
The initial conditions remain to be fulfilled. The first one for $n \rightarrow \infty$:
$v(x, 0)=\sum_{k=1}^{\infty}\left(A_{k} \cos (0)+B_{k} \sin (0)\right) \cdot \sin \left(\frac{k \pi x}{3}\right)=\sum_{k=1}^{\infty} A_{k} \sin \left(\frac{k \pi x}{3}\right)=2 \sin (\pi x) \quad x \in[0,3]$
The coefficients A_{k} can be obtained straightforwardly:

$$
A_{3}=2, \quad A_{k}=0 \quad \forall k \neq 3
$$

The second initial condition requires:

$$
v_{t}(x, 0)=\sum_{k=1}^{\infty} c k \omega B_{k} \cdot \sin (k \pi x)=1
$$

With the Fourier coefficients of the (discontinuous) odd continuation of $v_{t}(x, 0)$

$$
b_{k}=\frac{2}{3} \int_{0}^{3} \sin \left(\frac{k \pi x}{3}\right) d x=\left.\frac{2}{3} \frac{-\cos \left(\frac{k \pi x}{3}\right)}{\frac{k \pi}{3}}\right|_{0} ^{3}=\frac{2}{k \pi}(\cos (0)-\cos (k \pi))
$$

one obtains

$$
B_{k}=\frac{3}{2 k \pi} b_{k}=\frac{3}{2 k \pi} \cdot \frac{2}{k \pi}(\cos (0)-\cos (k \pi))=\frac{3}{k^{2} \pi^{2}}(1-\cos (k \pi)) .
$$

So it holds:

$$
v(x, t)=2 \cos (2 \pi t) \sin (\pi x)+\sum_{k=1}^{\infty} \frac{3}{k^{2} \pi^{2}}\left(1-(-1)^{k}\right) \sin \left(\frac{2 k \pi}{3} t\right) \cdot \sin \left(\frac{k \pi}{3} x\right) .
$$

The solution to the original problem is then

$$
u(x, t)=v(x, t)+e^{-t}+\frac{x}{3}\left(1-e^{-t}\right) .
$$

Exercise 2:

For the numerical solution of a differential equation for $u(x, t), x \in] 0,(n+1) \Delta x[, t>0$ with given initial data at $t=0$ and boundary data at $x=0$ and $x=(n+1) \Delta x$ the following grid is defined

$$
x_{j}=j \cdot \Delta x, \quad j=0,1, \ldots, n+1, \quad t_{m}=m \cdot \Delta t, \quad m=0,1,2, \ldots
$$

u_{j}^{m} is an approximation of $u\left(x_{j}, t_{m}\right)$.
Which PDEs are approximated by the following difference equations with the corresponding initial data $(m=0)$ and boundary data $(j=0$ or $j=n+1)$?

For $j=0, \ldots, N$ and $m=1,2,3 \ldots$:
a) $\frac{u_{j}^{m+1}-u_{j}^{m}}{\Delta t}+c \frac{u_{j}^{m}-u_{j-1}^{m}}{\Delta x}=0$,
b) $\frac{u_{j}^{m+1}-u_{j}^{m}}{\Delta t}+c \frac{u_{j}^{m+1}-u_{j-1}^{m+1}}{\Delta x}=0$,
c) $\frac{u_{j}^{m+1}-2 u_{j}^{m}+u_{j}^{m-1}}{\Delta t^{2}}=\frac{u_{j+1}^{m+1}-2 u_{j}^{m+1}+u_{j-1}^{m+1}}{\Delta x^{2},}$
d) $\frac{u_{j}^{m+1}-u_{j}^{m}}{\Delta t}+c \frac{u_{j+1}^{m}-u_{j-1}^{m}}{2 \Delta x}=\frac{u_{j+1}^{m}-2 u_{j}^{m}+u_{j-1}^{m}}{\Delta x^{2}}$
e) $\frac{u_{j}^{m+1}-u_{j}^{m}}{\Delta t}+c \frac{u_{j}^{m}-u_{j-1}^{m}}{\Delta x}=\frac{u_{j+1}^{m+1}-2 u_{j}^{m+1}+u_{j-1}^{m+1}}{\Delta x^{2}}$

For which difference equations can the data at time point $m+1$ be calculated directly if the data at time m is known? So which method is an explicit method?

Solution:

a) $u_{t}+c u_{x}=0$, explicit.
b) $u_{t}+c u_{x}=0$, implicit.
c) $u_{t t}=u_{x x}$, implicit.
d) $u_{t}+c u_{x}=u_{x x}$, explicit.
e) $u_{t}+c u_{x}=u_{x x}$, implicit.

Discussion: 11.07. - 15.07.2022

