Differential Equations II for Engineering Students

Homework sheet 6

Exercise 1:

a) Solve the initial value problem

$$
\begin{aligned}
u_{t t} & =u_{x x}, & & \text { on } \mathbb{R}^{2}, \\
u(x, 0) & =2 \sin (4 \pi x) & & x \in \mathbb{R}, \\
u_{t}(x, 0) & =\cos (\pi x) & & x \in \mathbb{R} .
\end{aligned}
$$

b) Given the problem

$$
\begin{aligned}
u_{t t} & =9 u_{x x}, \quad \text { for } x \in \mathbb{R}, t>0, \\
u(x, 0) & =f(x)= \begin{cases}2 & -1 \leq x \leq 1, \\
0 & \text { otherwise },\end{cases} \\
u_{t}(x, 0) & =0 .
\end{aligned}
$$

Sketch the obtained solution using d'Alembert's formula for

$$
t=0, \frac{1}{6}, \frac{1}{3}, \frac{2}{3}, 1 .
$$

Solution:

a) Using d'Alembert we have

$$
\begin{aligned}
u(x, t) & =\sin (4 \pi(x+t))+\sin (4 \pi(x-t))+\frac{1}{2 c} \int_{x-t}^{x+t} \cos (\pi \eta) d \eta \\
& =2 \sin (4 \pi x) \cos (4 \pi t)+\left.\frac{\sin (\pi \eta)}{2 \pi}\right|_{x-t} ^{x+t} \\
& =2 \sin (4 \pi x) \cos (4 \pi t)+\frac{1}{2 \pi}(\sin (\pi(x+t))-\sin (\pi(x-t))) \\
& =2 \sin (4 \pi x) \cos (4 \pi t)+\frac{1}{\pi}(\cos (\pi x) \cdot \sin (\pi t))
\end{aligned}
$$

b) D'Alembert's formula yields $u(x, t)=\frac{1}{2}(f(x+3 t)+f(x-3 t))$. So we obtain

$$
u(x, t)= \begin{cases}2 & \text { if }-1 \leq x-3 t \leq 1 \text { and }-1 \leq x+3 t \leq 1 \\ 1 & \text { if }-1 \leq x-3 t \leq 1 \text { or }-1 \leq x+3 t \leq 1 \text { with exclusive or } \\ 0 & \text { otherwise }\end{cases}
$$

For example, one obtains for $t=1 / 6$:

$$
\begin{aligned}
& x-3 t=x-0.5 \in[-1,1] \Longleftrightarrow x \in[-0.5,1.5] \text { and } \\
& x+3 t=x+0.5 \in[-1,1] \Longleftrightarrow x \in[-1.5,0.5]
\end{aligned}
$$

and hence

$$
u\left(x, \frac{1}{6}\right)= \begin{cases}2 & \text { for } x \in[-0.5,0.5] \\ 1 & \text { for } x \in[-1.5,-0.5) \text { or } x \in(0.5,1.5] \\ 0 & \text { otherwise }\end{cases}
$$

The solution for the other t values is calculated analogously.

$$
\begin{aligned}
& u\left(x, \frac{1}{3}\right)= \begin{cases}2 & \text { for } x=0 \\
1 & \text { for } x \in[-2,0) \text { or } x \in(0,2] \\
0 & \text { otherwise }\end{cases} \\
& u\left(x, \frac{2}{3}\right)= \begin{cases}1 & \text { for } x \in[-3,-1] \text { or } x \in[1,3] \\
0 & \text { otherwise }\end{cases} \\
& u(x, 1)= \begin{cases}1 & \text { for } x \in[-4,-2] \text { or } x \in[2,4] \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The original (angular) wave clearly breaks up into two waves running in opposite directions.

Exercise 2:

The following problem is given for $u(x, y, t)$.

$$
\begin{aligned}
u_{t} & =u_{x x}+u_{y y}, & x, y \in(0, \pi), t>0, \\
u(0, y, t)) & =u(\pi, y, t)=0, & \text { for } y \in(0, \pi), t>0, \\
u(x, 0, t)) & =u(x, \pi, t)=0, & \text { for } x \in(0, \pi), t>0, \\
u(x, y, 0) & =\frac{1}{2}(\sin (2 x)+\sin (x)) \sin (y) & \text { for } x, y \in(0, \pi) .
\end{aligned}
$$

a) Using the ansatz $u(x, y, t)=T(t) \cdot X(x) \cdot Y(y)$ for the solution of the differential equation, derive three decoupled ordinary differential equations for X, Y and T.
b) Derive first from the boundary values

$$
\begin{aligned}
& u(0, y, t)=u(\pi, y, t)=0, \quad \text { for } y \in[0, \pi], t>0 \\
& u(x, 0, t)=u(x, \pi, t)=0, \quad \text { for } x \in[0, \pi], t>0
\end{aligned}
$$

the boundary conditions for the solutions of the differential equations for X and Y, and solve the obtained ordinary boundary value problems for X and Y.
Then determine the appropriate functions $T(t)$.
c) Determine a series representation of the solution u to the original problem and fit it to the initial values

$$
u(x, y, 0)=\frac{1}{2}(\sin (2 x)+\sin (x)) \sin (y) \quad \text { for } x, y \in[0, \pi] .
$$

How does the solution behave for $t \rightarrow \infty$?

Solution:

a) We use the ansatz $u(x, y, t)=T(t) X(x) Y(y)$. Hence we get:

$$
\begin{aligned}
\dot{T} \cdot X \cdot Y & =T\left(X^{\prime \prime} \cdot Y+X \cdot Y^{\prime \prime}\right) \\
\frac{\dot{T}}{T} & =\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=-\lambda \\
\frac{\dot{T}}{T} & =-\lambda \quad \frac{X^{\prime \prime}}{X}=-\lambda-\frac{Y^{\prime \prime}}{Y}=-\mu
\end{aligned}
$$

b) From the boundary conditions one obtains for non-identical vanishing solutions

$$
\begin{aligned}
& u(0, y, t)=X(0) \cdot Y(y) \cdot T(t)=0 \Longrightarrow X(0)=0 \\
& u(\pi, y, t)=X(\pi) \cdot Y(y) \cdot T(t)=0 \Longrightarrow X(\pi)=0 \\
& u(x, 0, t)=X(x) \cdot Y(0) \cdot T(t)=0 \Longrightarrow Y(0)=0 \\
& u(x, \pi, t)=X(x) \cdot Y(\pi) \cdot T(t)=0 \Longrightarrow Y(\pi)=0
\end{aligned}
$$

For X one has

$$
\frac{X^{\prime \prime}}{X}=-\mu, X(0)=X(\pi)=0
$$

The solutions of this BVP have already been derived several times. They are

$$
X_{k}(x)=a_{k} \sin (k x), \quad k \in \mathbb{N}
$$

From the BVP for Y

$$
\frac{Y^{\prime \prime}}{Y}=\mu-\lambda, Y(0)=Y(\pi)=0 . \Longrightarrow Y(y)=b_{1} \sin (\sqrt{\lambda-\mu} y)+b_{2} \cos (\sqrt{\lambda-\mu} y)
$$

we obtain
$Y(y)=b_{1} \sin (\sqrt{\lambda-\mu} y)+b_{2} \cos (\sqrt{\lambda-\mu} y), Y(0)=0 \Longrightarrow b_{2}=0$,
$Y(\pi)=b_{1} \sin (\sqrt{\lambda-\mu} \pi)=0 \Longrightarrow \sqrt{\lambda-\mu}=n \in \mathbb{N}$.
With $\mu_{k}=k^{2}$ we have $\quad \lambda_{k}=\mu_{k}+n^{2}=k^{2}+n^{2}$ and

$$
Y_{n}(x)=b_{n} \sin (\sqrt{\lambda-\mu} y)=b_{n} \sin (n y), \quad n \in \mathbb{N}
$$

What remains is the differential equation for T

$$
\dot{T}=-\lambda T \Longrightarrow T(t)=c \cdot e^{-\lambda t}
$$

or in terms of X_{k}, Y_{k} with $\lambda_{k}=k^{2}+n^{2}$

$$
T_{k}(t)=c_{k} e^{-\left(k^{2}+n^{2}\right) t}
$$

c) Following part a) and b) the functions

$$
u_{n k}=c_{k} e^{-\left(n^{2}+k^{2}\right) t} a_{k} \sin (k x) b_{n} \sin (n y)=a_{k n} e^{-\left(n^{2}+k^{2}\right) t} \sin (k x) \sin (n y)
$$

solve the differential equation and fulfill the boundary values. Because of the linearity of the problem, every linear combination of such solutions is again a solution. Transition to an infinite number of summands (without checking the convergence) results in the solution ansatz

$$
\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{k n} e^{-\left(n^{2}+k^{2}\right) t} \sin (k x) \sin (n y)
$$

The initial value $u(x, y, 0)=\frac{1}{2}(\sin (2 x)+\sin (x)) \sin (y)$ for $x, y \in[0, \pi]$ yields $a_{11}=a_{21}=1 / 2$ and $a_{k n}=0$ otherwise. The solution reads as (can be confirmed by test substitution)

$$
u(x, y, t)=\frac{1}{2} e^{-2 t} \sin x \sin y+\frac{1}{2} e^{-5 t} \sin (2 x) \sin y
$$

It holds for $t \longrightarrow \infty$ because of the boundedness of the sine terms and $\lim _{t \rightarrow \infty} e^{-2 t}=\lim _{t \rightarrow \infty} e^{-5 t}=0$ it obviously tends to zero.

