Differential Equations II for Engineering Students

Work sheet 5

Exercise 1:

Using a suitable product ansatz, solve the following Dirichlet boundary value problem for the Laplace equation on the circle $r^{2}=x^{2}+y^{2} \leq 9$.

$$
\begin{array}{ll}
r^{2} u_{r r}+r u_{r}+u_{\varphi \varphi}=0 & 0 \leq r<3 \\
u(3, \varphi)=\cos ^{2}(\varphi) & \varphi \in \mathbb{R}
\end{array}
$$

Hints:

To solve Euler's equation
$r^{2} \cdot g^{\prime \prime}(r)+a r \cdot g^{\prime}(r)+b \cdot g(r)=0$ use the ansatz $g(r)=r^{k}$.
It holds: $\cos ^{2}(\varphi)=\frac{1}{2}(1+\cos (2 \varphi))$.

Solution sketch:

By inserting the product ansatz: $u=v(r) \cdot w(\varphi)$ into the Laplace equation in polar coordinates we obtain

$$
\begin{gathered}
r^{2} u_{r r}+r u_{r}+u_{\varphi \varphi}=0 \\
r^{2} v^{\prime \prime} w+r v^{\prime} w+v w^{\prime \prime}=0 \Longrightarrow \frac{r^{2} v^{\prime \prime}+r v^{\prime}}{v}=-\frac{w^{\prime \prime}}{w}=\lambda
\end{gathered}
$$

The solutions of $w^{\prime \prime} / w=-\lambda$ depend on the sign of λ, but only 2π-periodic solutions are possible here:

$$
w_{k}(\varphi)=c_{1} \cos (k \varphi)+c_{2} \sin (k \varphi), \quad \lambda=k^{2} \quad k \in \mathbb{N}_{0}
$$

For v we then get the (Euler's) differential equation

$$
r^{2} v^{\prime \prime}+r v^{\prime}-k^{2} v=0
$$

For $k=0$ we have the solution $v_{0}=a_{0}+b_{0} \ln (r)$.
For $k \neq 0$ using the ansatz $v=r^{m}$ we have two solutions $v_{k}=r^{k}$ and $\tilde{v}_{k}=r^{-k}$.
Since the solution should be defined in a circle around zero, i.e. it should remain restricted, the negative powers and the \ln - terms are not possible here. So we get the solution representation:

$$
u(r, \varphi)=a_{0}+\sum_{k=1}^{\infty}\left(c_{k} \cos (k \varphi)+d_{k} \sin (k \varphi)\right) r^{k}
$$

The boundary data gives us a condition

$$
\begin{aligned}
u(3, \varphi) & =a_{0}+\sum_{k=1}^{\infty}\left(c_{k} \cos (k \varphi)+d_{k} \sin (k \varphi)\right) 3^{k} \\
& =\cos ^{2}(\varphi)=\frac{1}{2}(1+\cos (2 \varphi)) .
\end{aligned}
$$

A coefficient comparison then yields the solution

$$
u(r, \varphi)=\frac{1}{2}+\frac{r^{2}}{18} \cos (2 \varphi)
$$

Exercise 2:

Determine the solution to the initial boundary value problem (IBVP)

$$
\begin{array}{ll}
u_{t}-u_{x x}=\sin (x) t & 0<x<\pi, 0<t, \\
u(x, 0)=4 \sin (3 x)+\frac{x}{\pi} & 0 \leq x \leq \pi, \\
u(0, t)=\phi_{1}(t)=0 & 0 \leq t, \\
u(\pi, t)=\phi_{2}(t)=1 & 0 \leq t .
\end{array}
$$

Note: First homogenize the boundary conditions by using the function

$$
v(x, t)=u(x, t)-\phi_{1}(t)-\frac{x-a}{b-a}\left(\phi_{2}(t)-\phi_{1}(t)\right)
$$

with $a=0$ and $b=\pi$ and then replace the u-expressions with corresponding v expressions. You get e.g.

$$
u_{t}=v_{t}+\dot{\phi}_{1}+\frac{x-a}{b-a}\left(\dot{\phi}_{2}-\dot{\phi}_{1}\right) .
$$

Solution:

Step 1: Homogenization of the boundary conditions

$$
v(x, t)=u(x, t)-\varphi_{1}(t)-\frac{x-0}{\pi-0}\left(\varphi_{2}(t)-\varphi_{1}(t)\right)=u(x, t)-\frac{x}{\pi}
$$

New IBVP:

$$
\begin{aligned}
v_{t}-v_{x x} & =\sin (x) t \\
v(x, 0) & =u(x, 0)-\frac{x}{\pi}=4 \sin (3 x) \\
v(0, t) & =v(\pi, t)=0
\end{aligned}
$$

Step 2: Solving the homogeneous IBVP

With $\omega=\frac{\pi}{L}=1$ and $c=1$ we make an ansatz
$v(x, t)=\sum_{n=1}^{\infty} a_{n}(t) \sin (n \omega x)$.
Every function $a_{n}(t) \sin (n \omega x)$ fulfills the homogeneous boundary conditions. Thus, every sum of these functions also satisfies the homogeneous boundary conditions.
Inserting the ansatz into the differential equation and Fourier expansion of the odd, $2 L$ - periodic continuations of the right-hand side yield the ordinary differential equations
$\dot{a}_{n}(t)+c n^{2} \omega^{2} a_{n}(t)=c_{n}(t), a_{n}(0)=b_{n}$
b_{n} : Fourier coefficients of the odd $2 L-$ periodic continuation of $v(x, 0)$:
$4 \sin (3 x)=\sum_{n=1}^{\infty} b_{n} \sin (n x)$
Hence $b_{n}=0, \forall n \neq 3, \quad b_{3}=4$.
$c_{n}(t)$: Fourier coefficients of the odd, $2 L$ - periodic continuation of $h(x, t)$:
$\sin (x) t=\sum_{n=1}^{\infty} c_{n}(t) \sin (n x)$

Hence $c_{n}(t) \equiv 0, \forall n \neq 1, \quad c_{1}(t)=t$.

For $n \notin\{1,3\}$ we obtain the initial value problem
$\dot{a}_{n}(t)+n^{2} a_{n}(t)=c_{n}(t)=0, a_{n}(0)=b_{n}=0$
with the solution $a_{n}(t) \equiv 0$ 。

For $n=1$:
$\dot{a}_{1}(t)+1^{2} a_{1}(t)=c_{1}(t)=t, a_{1}(0)=b_{1}=0$
The associated homogeneous differential equation
$\dot{a}_{1 h}(t)+a_{1 h}(t)=0$ is obviously solved by e^{-t}.
Using the ansatz
$a_{1 p}(t)=\alpha+\beta t$ we obtain the particular solution of the non-homogeneous problem for a_{1} $a_{1 p}(t)=t-1$. Hence we have
$a_{1}(t)=\gamma e^{-t}+t-1 \quad$ and $\quad a_{1}(0)=\gamma e^{0}+0-1=0 \Longrightarrow \gamma=1$
$\Longrightarrow \quad a_{1}(t)=e^{-t}+t-1$

For $n=3$:

$$
\begin{aligned}
& \dot{a}_{3}(t)+3^{2} a_{3}(t)=c_{3}(t)=0, \quad a_{3}(0)=b_{3}=4 \\
& \Longrightarrow a_{3}(t)=\tilde{\gamma} e^{-9 t} \quad \text { and } \quad a_{3}(0)=\tilde{\gamma} e^{0}=4
\end{aligned}
$$

Hence $a_{3}(t)=4 e^{-9 t}$

$$
\begin{aligned}
v(x, t) & =\sum_{k=1}^{\infty} a_{n}(t) \sin (n \omega x)=a_{1}(t) \sin (x)+a_{3}(t) \sin (3 x) \\
& =\left(e^{-t}+t-1\right) \sin (x)+4 e^{-9 t} \sin (3 x)
\end{aligned}
$$

Step 3: Compose the solution

The solution to the original problem is

$$
u(x, t)=v(x, t)+\frac{x}{\pi}=4 e^{-9 t} \sin (3 x)+\left(e^{-t}+t-1\right) \sin x+\frac{x}{\pi} .
$$

