Prof. Dr. J. Behrens Dr. H. P. Kiani S. Onyshkevych

Differential Equations II for Engineering Students Homework sheet 5

Exercise 1:

- a) Derive Green's function for a sphere of radius R around the origin.
- b) Let

 \bar{x} =reflection of $x = (x_1, x_2)$ through the x_1 -axis,

 \hat{x} =reflection of x through the x_2 -axis,

 \tilde{x} =reflection of x through the origin

Show that the Green's function for the quadrant $x_1 > 0$, $x_2 > 0$ can be constructed using the correction function

$$\Phi^{x}(y) := \Phi(y - \bar{x}) + \Phi(y - \hat{x}) - \Phi(y - \tilde{x})$$

Solution hints for the exercise 1

a) To construct a correction function, we choose the reflection on the sphere:

$$\tilde{x} := R^2 \frac{x}{\|x\|^2}$$

Then it holds for y from the edge of the sphere, i.e. ||y|| = R

$$||y - \tilde{x}||^2 = (y - \tilde{x})^T (y - \tilde{x}) = R^2 - 2y^T \tilde{x} + ||\tilde{x}||^2$$

$$= R^2 - 2\frac{R^2}{||x||^2} y^T x + \frac{R^4}{||x||^4} x^T x = \frac{R^2}{||x||^2} (||x||^2 - 2y^T x + R^2)$$

$$= \frac{R^2}{||x||^2} (||x||^2 - 2y^T x + y^T y) = \frac{R^2}{||x||^2} ||y - x||^2$$

Hence it holds $||y-x|| = \frac{||x||}{R} ||y-\tilde{x}|| \quad \forall y: ||y|| = R$ and with

$$\Phi^{x}(y) := \Phi\left(\frac{\|x\|}{R}(y - \tilde{x})\right)$$

we obtain

$$\Delta \Phi^x = 0$$
 $\forall x, y : ||y||, ||x|| < R$
 $\Phi^x(y) = \Phi(y - x)$ $\forall y : ||y|| = R.$
 $G(x, y) := \Phi(y - x) - \Phi^x(y)$

b) Certainly, it holds $\Delta_y \Phi^x = 0$ on $y_1, y_2 > 0$, $x \in \mathbb{R}^2$. It remains to show that the values of $\Phi(y-x)$ and $\Phi^x(y)$ coincide on the boundary. It holds

$$\phi^{x}(y) = \Phi(y - \bar{x}) + \Phi(y - \hat{x}) - \Phi(y - \tilde{x})$$

= $\Phi(y_1 - x_1, y_2 + x_2) + \Phi(y_1 + x_1, y_2 - x_2) - \Phi(y_1 + x_1, y_2 + x_2).$

For $y_2 = 0$, $y_1 > 0$ we have

$$\Phi^{x}(y) = \Phi(y_1 - x_1, x_2) + \Phi(y_1 + x_1, -x_2) - \Phi(y_1 + x_1, x_2).$$

Since Φ only depends on the absolute values of the components, the last two terms cancel each other out and we obtain

$$\Phi^{x}(y) = \Phi(y_1 - x_1, x_2) = \Phi(y_1 - x_1, -x_2)$$

= $\Phi(y_1 - x_1, y_2 - x_2) = \Phi(y - x).$

The argument for $y_1 = 0$, $y_2 > 0$ is analogous:

$$\Phi^{x}(y) = \Phi(-x_1, y_2 + x_2) + \Phi(x_1, y_2 - x_2) - \Phi(x_1, y_2 + x_2)$$

= $\Phi(x_1, y_2 - x_2) = \Phi(0 - x_1, y_2 - x_2) = \Phi(y - x).$

For $y_1 = y_2 = 0$ we obtain

$$\Phi^{x}(y) = \Phi(-x_1, x_2) + \Phi(x_1, -x_2) - \Phi(x_1, x_2)$$

= $\Phi(-x_1, -x_2) = \Phi(0 - x_1, 0 - x_2) = \Phi(y - x).$

Exercise 2

Determine the solutions to the following tasks using the suitable product ansatz.

 $u(\pi, t) = u(0, t) = 0$ t > 0.

a)
$$u_{t} = u_{xx} x \in \mathbb{R}, \ t \in \mathbb{R}^{+},$$

$$u(x,0) = \sin(x) + 2\cos(2x) x \in \mathbb{R}.$$
 b)
$$u_{t} - u_{xx} = 0 0 < x < \pi, \ t \in \mathbb{R}^{+},$$

$$u(x,0) = \frac{\sin(2x)}{2} + \frac{\sin(4x)}{4} 0 < x < \pi$$

Solution hints to Exercise 2:

a)
$$u_t = u_{xx} \qquad x \in \mathbb{R}, \ t \in \mathbb{R}^+,$$

$$u(x,0) = \sin(x) + 2\cos(2x) \qquad x \in \mathbb{R}.$$

The ansatz u(x,t) = X(x)T(t) (see notes on lecture 7) gives us

$$X\dot{T} = T \cdot X''$$

$$\frac{X''}{X} = \frac{\dot{T}}{T} = \lambda = \text{constant}$$

$$T(t) = T(0)e^{\lambda t}$$

$$X(x) = a\cos(\sqrt{-\lambda}x) + b\sin(\sqrt{-\lambda}x)$$

We solve the problem for the right-hand side sin(x). It must hold

$$u_1(x,0) = T_1(0) \left(a_1 \cos(\sqrt{-\lambda_1}x) + b_1 \sin(\sqrt{-\lambda_1}x) \right) = \sin(x)$$

We have a solution as $a_1 = 0, b_1 = 1/T_1(0)$, and $\lambda_1 = -1$. Hence we obtain

$$u_1(x,0) = \sin(x)e^{-t}$$

We proceed analogously with $2\cos(2x)$ and obtain $a_2 = 2/T_2(0)$, $b_2 = 0$, $\lambda_2 = -4$ and hence

$$u_2(x,t) = 2\cos(2x)e^{-4t}$$

We conclude with the superposition principle:

$$u(x,t) = u_1(x,t) + u_2(x,t) = \sin(x)e^{-t} + 2\cos(2x)e^{-4t}$$

b) Product ansatz for

$$u_t - u_{xx} = 0 0 < x < \pi, \ t \in \mathbb{R}^+,$$

$$u(x,0) = \frac{\sin(2x)}{2} + \frac{\sin(4x)}{4} 0 < x < \pi$$

$$u(\pi,t) = u(0,t) = 0 t > 0.$$

gives us as in part a)

$$T(t) = T(0)e^{\lambda t}$$

$$X(x) = a\cos(\sqrt{-\lambda}x) + b\sin(\sqrt{-\lambda}x)$$

It follows from the boundary data that the cosine terms must vanish (u(0,t) = 0), and

$$\sin(\sqrt{-\lambda}\pi) = 0 \implies \lambda_k = -k^2 \qquad k \in \mathbb{Z}.$$

Every function of the form

$$u_k(x,t) = c_k e^{-k^2 t} \sin(kx)$$

solves the differential equation and fulfills the boundary data. We make an ansatz

$$u(x,t) = \sum_{k=1}^{\infty} c_k e^{-k^2 t} \sin(kx)$$

The initial condition remains to be fulfilled. To do this, we expand the right-hand side of the initial condition into a Fourier sine series in terms of the functions $\sin(kx)$. This can be read directly here because of the form of the right side. It must hold

$$u(x,0) = \sum_{k=1}^{\infty} c_k e^{0t} \sin(kx) = \sum_{k=1}^{\infty} c_k \sin(kx) = \frac{\sin(2x)}{2} + \frac{\sin(4x)}{4}$$

and hence we have

$$c_2 = \frac{1}{2}, \qquad c_4 = \frac{1}{4}, \qquad c_k = 0 \quad \text{sonst}$$

So the solution is

$$u(x,t) = \frac{1}{2}e^{-4t}\sin(2x) + \frac{1}{4}e^{-16t}\sin(4x).$$