Differential Equations II for Engineering Students

Work sheet 4

Exercise 1:

Determine the type of the following differential equations
a) $u_{x x}+4 u_{x t}-5 u_{t t}=0$,
b) $10 u_{x x}+6 u_{x y}+u_{y y}=0$
c) $4 x^{2} u_{x x}+8 x y u_{x y}+y^{2} u_{y y}+2 x u_{x}=0$

Solution:

a) $u_{x x}-4 u_{x t}-5 u_{t t}=0$

$$
1 \cdot(-5)-(-2)^{2}<0 \quad \text { hyperbolic }
$$

b) $10 u_{x x}+6 u_{x y}+u_{y y}=0$

$$
10-3^{2}=1 \quad \text { elliptic }
$$

c) $4 x^{2} u_{x x}+8 x y u_{x y}+y^{2} u_{y y}+2 x u_{x}=0$

$$
\begin{gathered}
4 x^{2} \cdot y^{2}-16 x^{2} y^{2}=-12 x^{2} y^{2} \Longrightarrow \begin{cases}\text { parabolic for } & x y=0 \\
\text { hyperbolic for } & x y \neq 0\end{cases} \\
\text { parabolic } \rightarrow \frac{\text { hyperb. } \mid \text { hyperb. }}{\text { hyperb. } \mid \text { hyperb. }} \\
\uparrow \\
\text { parabolic }
\end{gathered}
$$

Exercise 2:

Determine all rotationally symmetrical solutions of the following boundary value problem

$$
\begin{aligned}
\Delta u & =-\frac{1}{\sqrt{x^{2}+y^{2}}} \text { for } 1<x^{2}+y^{2}<9 \\
u(x, y) & =1 \quad \text { on } x^{2}+y^{2}=1 \\
u(x, y) & =2 \quad \text { on } x^{2}+y^{2}=9 .
\end{aligned}
$$

Note: Laplace equation in polar coordinates is given by $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\varphi \varphi}=0$.
Rotationally symmetrical means that it does not depend on ϕ

Solution:

As in the lecture, for rotationally symmetric problems with $v(r):=u(x(r), y(r)), w:=v^{\prime}$ and right-hand size $-f(r)$:

$$
\begin{aligned}
v^{\prime \prime}+\frac{2-1}{r} v^{\prime} & =-f(r)=-r^{-1} \Longrightarrow w^{\prime}+\frac{1}{r} w=-r^{-1} \Longrightarrow w_{h}=\alpha / r, \\
w_{p}=\alpha(r) / r & \Longrightarrow \alpha^{\prime}(r) / r=-1 / r \Longrightarrow \alpha^{\prime}(r)=-1 \Longrightarrow \alpha(r)=-r+c \\
& \Longrightarrow w(r)=-1+\alpha / r \Longrightarrow v(r)=\alpha \ln (r)-r+\beta \\
& \Longrightarrow u(x, y)=\alpha \ln \left(\sqrt{x^{2}+y^{2}}\right)-\sqrt{x^{2}+y^{2}}+\beta
\end{aligned}
$$

The boundary data gives us for $x^{2}+y^{2}=1$:

$$
u(x, y)=-1+\beta=1 \Longrightarrow \beta=2
$$

and for $x^{2}+y^{2}=9$

$$
u(x, y)=\alpha \ln (3)-3+2=2 \Longrightarrow \alpha=3 / \ln (3)
$$

Exercise 3: Only for very fast students

a) Let u be the solution of the boundary value problem

$$
\begin{aligned}
\Delta u & =-1 & & |x|<1,|y|<1, \\
u(x, y) & =0 & & |x|=1 \text { or }|y|=1
\end{aligned}
$$

and $v(x, y)=u(x, y)+\frac{1}{4}\left(x^{2}+y^{2}\right)$.
Show that $v(x, y)$ solves Laplace equation, and determine the upper and lower bounds for $u(0,0)$.
b) Let $u(x, y)$ is a solution to the problem:

$$
\begin{aligned}
\Delta u & =0, & \text { in } \Omega:=] 0,2[\times] 0,1[\\
u(x, y) & =3 x^{2} & \text { on } \partial \Omega .
\end{aligned}
$$

Determine, without computing u, for each of the following statements whether it is true. Explain your answers.

- It holds $\max _{(x, y) \in \bar{\Omega}} u(x, y)=2$.
- It holds $\min _{(x, y) \in \bar{\Omega}} u(x, y)=0$.
- $u(x, y)=3 x^{2}-3 y^{2}$ is a solution to the boundary value problem.

Solution:

a) It holds

$$
\begin{aligned}
v_{x x}+v_{y y} & =u_{x x}+\left(\frac{1}{4}\left(x^{2}+y^{2}\right)\right)_{x x}+u_{y y}+\left(\frac{1}{4}\left(x^{2}+y^{2}\right)\right)_{y y} \\
& =\Delta u+\frac{1}{4}\left(x^{2}\right)_{x x}+\frac{1}{4}\left(y^{2}\right)_{y y}=-1+\frac{1}{2}+\frac{1}{2}=0
\end{aligned}
$$

So the function v fulfills Laplace equation. It attains its minimum and maximum on the boundary of rectangle $[-1,1] \times[-1,1]$. There it holds

$$
v(x, y)=u(x, y)+\frac{1}{4}\left(x^{2}+y^{2}\right) \leq 0+\frac{1}{4}\left(1^{2}+1^{2}\right)=\frac{1}{2} .
$$

and
$v(x, y) \geq 0+\frac{1}{4} \quad$ (it is always $|x|$ or $|y|=1$.)
So in the entire rectangle it holds $\frac{1}{4} \leq v(x, y) \leq \frac{1}{2}$.
Hence we obtain $\quad u(0,0)=v(0,0) \in\left[\frac{1}{4}, \frac{1}{2}\right]$.
b) The first statement is false because, for example, $u(1,0)=3>2$.

The second statement follows from the maximum principle.
$u(x, y)=3 x^{2}-3 y^{2}$ is a solution to the differential equation, but it does not satisfy the boundary conditions.

