Prof. Dr. J. Behrens Dr. H. P. Kiani Sofiya Onyshkevych

Differential Equations II for Engineering Students

Homework sheet 4

Exercise 1: Given a differential equation

$$2u_{xx} + 4u_{xy} + 2u_{yy} + \sqrt{2}(u_x + u_y) = 0.$$

- a) Determine the type of the equation.
- b) Transform the equation to its normal form.
- c) Determine the general solution of the transformed differential equation and perform the backwards transformation.

Solution:

- a) $2 \cdot 2 2^2 = 0$. It is a parabolic differential equation.
- b) In the matrix form:

$$(\nabla^T A \nabla) u + (b^T \nabla) u = 0, \qquad A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$

Characteristic polynomial: $(2 - \lambda)^2 - 4 = 0 \implies \lambda_1 = 0, \ \lambda_2 = 4$.

The eigenvector $\boldsymbol{w}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ for eigenvalue 0 can be obtained straightforwardly.

The eigenvector \boldsymbol{w}_2 for eigenvalue 4 is orthogonal to \boldsymbol{w}_1 . So $\boldsymbol{w}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

So we obtain the transformation:

$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \qquad \begin{pmatrix} \eta \\ \tau \end{pmatrix} = S^T \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{x-y}{\sqrt{2}} \\ \frac{x+y}{\sqrt{2}} \end{pmatrix}$$

We define $\tilde{u}(\eta,\tau) = \tilde{u}(\eta(x,y),\tau(x,y)) = u(x,y)$. It holds:

$$\nabla_{xy} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial t} \end{pmatrix} = S \cdot \nabla_{\eta\tau} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial \eta} \\ \frac{\partial}{\partial \tau} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\partial}{\partial \eta} + \frac{\partial}{\partial \tau} \\ -\frac{\partial}{\partial \eta} + \frac{\partial}{\partial \tau} \end{pmatrix}$$

so
$$u_x + u_y = \sqrt{2}\tilde{u}_{\tau}$$

So we obtain a new differential equation

$$4\tilde{u}_{\tau\tau} + 2\tilde{u}_{\tau} = 0 \iff \tilde{u}_{\tau\tau} + \frac{1}{2}\tilde{u}_{\tau} = 0$$

c) To determine the general solution we define $z(\eta,\tau) = \tilde{u}_{\tau}(\eta,\tau)$. Thus, we obtain

$$z_{\tau} = -\frac{1}{2}z \iff \frac{dz}{d\tau} = -\frac{z}{2} \iff \frac{dz}{z} = -\frac{d\tau}{2} \iff \ln|z| = -\frac{\tau}{2} + k(\eta) \iff z = K(\eta) \cdot e^{-\frac{\tau}{2}}$$

Integration w.r.t τ gives (with $f(\eta) = -2K(\eta)$

$$\tilde{u}(\eta,\tau) = f(\eta)e^{-\frac{\eta}{2}} + g(\eta)$$

or

$$u(x,y) = f\left(\frac{x-y}{\sqrt{2}}\right)e^{-\frac{x+y}{2\sqrt{2}}} + g\left(\frac{x-y}{\sqrt{2}}\right).$$

Alternative solution:

$$4\tilde{u}_{\tau\tau} + 2\tilde{u}_{\tau} = 0 \iff \tilde{u}_{\tau\tau} + \frac{1}{2}\tilde{u}_{\tau} = 0$$

Characteristic polynomial:

$$\lambda^2 + \frac{1}{2}\lambda = 0 \Longrightarrow \lambda_1 = 0, \, \lambda_2 = -\frac{1}{2}$$

General solution:

$$\tilde{u}(\eta,\tau) = c_2(\eta) + c_1(\eta)e^{-\frac{\eta}{2}}$$

$$u(x,y) = c_1 \left(\frac{x-y}{\sqrt{2}}\right) + c_2 \left(\frac{x-y}{\sqrt{2}}\right) e^{-\frac{x+y}{2\sqrt{2}}}.$$

Exercise 2:

Given the initial value problem

$$u_{tt} + u_{xt} - 2u_{xx} = 0$$
 for $x \in \mathbb{R}$, $t \in \mathbb{R}^+$
 $u(x,0) = \cos(x)$ for $x \in \mathbb{R}$,
 $u_t(x,0) = -4\sin(x)$. for $x \in \mathbb{R}$.

Solve the problem using the substitution $\alpha = x + t, \mu = x - 2t$.

Note: The procedure is analogous to the derivation of the solution to the Cauchy problem for the wave equation from the lecture. Alternatively: convert the derivatives in terms of x, t into derivatives in terms of α , μ .

Solution:

Using the substitution $\alpha = x + t$, $\mu = x - 2t$ we obtain

$$x = \frac{1}{3}(2\alpha + \mu), \quad t = \frac{1}{3}(\alpha - \mu),$$

so

$$u(x,t) = u\left(\frac{1}{3}(2\alpha + \mu), \frac{1}{3}(\alpha - \mu)\right) =: v(\alpha, \mu)$$

Further, it holds

$$v_{\alpha} = \frac{2}{3}u_x + \frac{1}{3}u_t$$

$$v_{\alpha\mu} = \frac{2}{3} \cdot \frac{1}{3}u_{xx} + \frac{2}{3} \cdot \left(-\frac{1}{3}\right)u_{xt} + \frac{1}{3} \cdot \frac{1}{3}u_{tx} + \frac{1}{3} \cdot \left(-\frac{1}{3}\right)u_{tt}$$

$$= -\frac{1}{9}\left(u_{tt} + u_{xt} - 2u_{xx}\right) = 0$$

Hence it follows

$$v(\alpha, \mu) = \phi(\alpha) + \chi(\mu)$$

and

$$u(x,t) = v(\alpha,\mu) = \phi(x+t) + \chi(x-2t)$$

with sufficiently smooth functions ϕ and χ . From the initial values we obtain two conditions

$$u(x,0) = \phi(x) + \chi(x) \stackrel{!}{=} \cos(x)$$
 as well as $u_t(x,0) = \phi'(x) - 2\chi'(x) \stackrel{!}{=} -4\sin(x) \Rightarrow \phi(x) - 2\chi(x) \stackrel{!}{=} -4\int_{x_0}^x \sin(z) dz.$

Adding twice the first equation to the second equation, we get

$$3\phi(x) = 2\cos(x) + 4\cos(x) - 4\cos(x_0).$$

Subtracting the two conditions leads to

$$3\chi(x) = \cos(x) - 4\cos(x) + 4\cos(x_0).$$

The solution to the initial value problem is therefore given by

$$u(x,t) = 2\cos(x+t) - \cos(x-2t).$$

Alternative solution:

Using the substitution $\alpha = x + t$, $\mu = x - 2t$, $v(\alpha, \mu) = u(x, t)$ we obtain

$$u_{x} = v_{\alpha} \cdot \alpha_{x} + v_{\mu} \cdot \mu_{x} = v_{\alpha} + v_{\mu}$$

$$u_{t} = v_{\alpha} \cdot \alpha_{t} + v_{\mu} \cdot \mu_{t} = v_{\alpha} - 2v_{\mu}$$

$$u_{xx} = v_{\alpha\alpha} \cdot \alpha_{x} + v_{\alpha\mu} \cdot \mu_{x} + v_{\mu\alpha} \cdot \alpha_{x} + v_{\mu\mu} \cdot \mu_{x} = v_{\alpha\alpha} + 2v_{\alpha\mu} + v_{\mu\mu}$$

$$u_{xt} = v_{\alpha\alpha} \cdot \alpha_{t} + v_{\alpha\mu} \cdot \mu_{t} + v_{\mu\alpha} \cdot \alpha_{t} + v_{\mu\mu} \cdot \mu_{t} = v_{\alpha\alpha} - v_{\alpha\mu} - 2v_{\mu\mu}$$

$$u_{tt} = v_{\alpha\alpha} \cdot \alpha_{t} + v_{\alpha\mu} \cdot \mu_{t} - 2v_{\mu\alpha} \cdot \alpha_{t} - 2v_{\mu\mu} \cdot \mu_{t} = v_{\alpha\alpha} - 4v_{\alpha\mu} + 4v_{\mu\mu}$$

$$u_{tt} + u_{xt} - 2u_{xx} = -9v_{\alpha\mu} = 0 \iff v_{\alpha\mu} = 0$$

Hence we obtain

$$v_{\alpha} = \phi(\alpha) \implies v(\alpha, \mu) = \Phi(\alpha) + \Psi(\mu) \implies u(x, t) = \Phi(x + t) + \Psi(x - 2t)$$

Initial conditions:

$$u(x,0) = \Phi(x) + \Psi(x) = \cos(x),$$
 $u_t(x,0) = \Phi'(x) - 2\Psi'(x) = -4\sin(x)$

Differentiating the first equation and subtracting the second equation gives

$$\Phi'(x) + \Psi'(x) = -\sin(x) \longrightarrow \Psi'(x) = \sin(x)$$
.

Substituting into the first equation of the last line gives

$$\Phi'(x) = -2\sin(x) \implies \Phi(x) = 2\cos(x) + C$$
$$u(x,t) = 2\cos(x+t) - \cos(x-2t).$$

For $u_{tt} + (a+b)u_{tx} + abu_{xx}$ analogous with substitution $\alpha = x - bt$, $\mu = x - at$.

Exercise 3:

- a) For which real values of α and for which real-valued functions $g: \mathbb{R} \to \mathbb{R}$ are the following functions harmonic in \mathbb{R}^2 ?
 - i) $\tilde{u}(x,y) = \cos(\alpha x) \cdot e^{3y}$, ii) $\hat{u}(x,y) = \sin(\alpha x) \cdot \cosh(3y)$
 - iii) $u(x,y) = \frac{1}{2} \cdot (x^3 + g(x) \cdot y^2)$.
- b) Let $\Omega:=\left\{(x,y)^T\in\mathbb{R}^2: x^2+y^2<16\right\}$ and u be the solution of boundary value problem

$$\Delta u(x,y) = 0$$
 in Ω , $u(x,y) = \frac{2y^2}{x^2 + y^2}$ on $\partial \Omega$.

Determine the value of u in the origin.

Note:
$$\sin^2(\varphi) = \frac{1 - \cos(2\varphi)}{2}$$
.

Solution:

- a) i) $\Delta \tilde{u}(x,y) = -\alpha^2 \cos(\alpha x) \cdot e^{3y} + 9 \cdot \cos(\alpha x) \cdot e^{3y}$. \tilde{u} is for $\alpha = \pm 3$ harmonic.
 - ii) $\Delta \hat{u}(x,y) = -\alpha^2 \sin(\alpha x) \cdot \cosh(3y) + 9\sin(\alpha x) \cdot \cosh(3y)$. \hat{u} is also for $\alpha = \pm 3$ harmonic. Additionally there is a trivial solution for $\alpha = 0$.

iii)
$$\Delta u(x,y) = \frac{1}{2} \cdot (6x + g''(x)y^2 + 2g(x)) = 0 \quad \forall y \in \mathbb{R}^2 \Longrightarrow g(x) = -3x$$
.

b) Let K_4 be the edge of the disk with radius 4 around zero and

$$c(t) = (4\cos(t), 4\sin(t)), \qquad t \in [0, 2\pi]$$

a parametrization of K_4 . Then it holds because of the mean value property

$$u(0,0) = \frac{1}{2\pi \cdot 4} \int_{K_4} \frac{2y^2}{x^2 + y^2} d(x,y) = \frac{1}{8\pi} \int_0^{2\pi} \frac{2 \cdot 16 \sin^2(t)}{16 \cos^2(t) + 16 \sin^2(t)} \cdot ||\dot{c}(t)|| dt$$
$$= \frac{1}{8\pi} \int_0^{2\pi} (1 - \cos(2t)) \cdot 4 dt = 1.$$