Differential Equations II for Engineering Students

Work sheet 2

Exercise 1:

Determine the entropy solution to Burgers' equation $u_{t}+u u_{x}=0$ with the initial data
a) $u(x, 0)=\left\{\begin{array}{l}0 \\ 1 \\ 2\end{array}\right.$

b) $u(x, 0)= \begin{cases}2 & x<0 \\ 1 & 0 \leq x \leq 2 \\ 0 & 2<x\end{cases}$

Solution sketch:
a) $u_{t}+u u_{x}=0$

$$
u(x, 0)= \begin{cases}0 & x<0 \\ 1 & 0 \leq x \leq 1 \\ 2 & x>1\end{cases}
$$

$\longrightarrow \quad$ two rarefaction waves

$$
u(x, t)= \begin{cases}0 & x \leq 0 \\ \frac{x}{t} & 0 \leq x \leq t \\ 1 & t \leq x \leq t+1 \\ \frac{x-1}{t} & t+1 \leq x \leq 2 t+1 \\ 2 & x \geq 2 t+1\end{cases}
$$

b) $u_{t}+u u_{x}=0$

$$
u(x, 0)= \begin{cases}2 & x<0 \\ 1 & 0 \leq x \leq 2 \\ 0 & x>2\end{cases}
$$

2 shock waves:
$s_{1}(t)$ with $s_{1}(0)=0 \quad \dot{s}_{1}(t)=\frac{2+1}{2}=\frac{3}{2}$

$$
s_{1}(t)=\frac{3}{2} t
$$

$s_{2}(t)$ with $s_{2}(0)=2 \quad \dot{s}_{2}(t)=\frac{0+1}{2}=1 / 2$

$$
s_{2}(t)=2+\frac{t}{2}
$$

for $t=2$ is $s_{1}(t)=s_{2}(t)$
$\longrightarrow \quad$ new shock wave
$s_{3}(t)$ with $s_{3}(2)=s_{1}(2)=s_{2}(2)=3 \quad \dot{s}_{3}(t)=\frac{2+0}{2}=1$ so

$$
s_{3}(t)=t+1
$$

for $t<2$

$$
u(x, t)= \begin{cases}2 & x<\frac{3}{2} t \\ 1 & \frac{3}{2} t \leq x \leq 2+\frac{t}{2} \\ 0 & x>2+\frac{t}{2}\end{cases}
$$

for $t \geq 2$

$$
u(x, t)= \begin{cases}2 & x \leq t+1 \\ 0 & x>t+1\end{cases}
$$

Exercise 2)

Given a conservation equation $u_{t}+\left(\frac{u^{4}}{16}\right)_{x}=0, \quad x \in \mathbb{R}, t \in \mathbb{R}^{+}$.
a) Are the characteristics $(x(t), t)$ straight lines? Explain your answer.
b) Given the initial data $u(x, 0)=2+\arctan (x), x \in \mathbb{R}$. Determine the characteristic through the point $(0,0)$.
c) Check which of the functions $u^{*}, \tilde{u}, \hat{u}$ given below is the (weak) entropy solution for the initial values

$$
u(x, 0)= \begin{cases}2 & \text { for } x \leq 0 \\ 1 & \text { for } x>0\end{cases}
$$

$$
\begin{gathered}
u^{*}(x, t)= \begin{cases}2 & \text { for } x \leq \frac{3}{2} t, \\
1 & \text { for } x>\frac{3}{2} t .\end{cases} \\
\tilde{u}(x, t)= \begin{cases}2 & \text { for } x \leq \frac{15}{16} t \\
1 & \text { for } x>\frac{15}{16} t\end{cases} \\
\hat{u}(x, t)= \begin{cases}2 & \text { for } x \leq 0 \\
2-\frac{x}{t} & \text { for } 0<x \leq t \\
1 & \text { for } x>t\end{cases}
\end{gathered}
$$

Solution sketch:

a) For the characteristics, on one hand, we have $\frac{d u}{d t}=0 \Longrightarrow u$ is constant along the characteristics.
On the other hand, the characteristics have slope $\quad \frac{d x}{d t}=\frac{u^{3}}{4}$.
So the slope of the characteristics is constant. Hence they are straight lines.
b) The characteristic through the point $(0,0)$ is a straight line $(x(t), t)$ through $(0,0)$ with $\dot{x}(t)=\frac{u(0,0)^{3}}{4}=\frac{(2+\arctan (0))^{3}}{4}=2$, so the line $x=2 t$.
c) The shock front $s(t)$ of the entropy solution must fulfill the jump condition $\dot{s}(t)=$ $\frac{f\left(u_{l}\right)-f\left(u_{r}\right)}{u_{l}-u_{r}}$. So we have

$$
\dot{s}(t)=\frac{\frac{u_{l}^{4}}{16}-\frac{u_{r}^{4}}{16}}{u_{l}-u_{r}}=\frac{\frac{2^{4}}{16}-\frac{1^{4}}{16}}{2-1}=\frac{15}{16} .
$$

u^{*} does not satisfy the jump condition: $\dot{s}(t)=\frac{15}{16}$.
\tilde{u} satisfies the jump condition and is a classical solution outside the shock front, i.e. is overall a weak entropy solution.
\hat{u} has no discontinuities. There is no jump condition to be fulfill! But for $0<x<t$ it is not a solution to the differential equation.
It holds $\hat{u}_{t}+\frac{\hat{u}^{3}}{4} \hat{u}_{x}=\frac{x}{t^{2}}+\left(2-\frac{x}{t}\right)^{3}\left(\frac{-1}{4 t}\right)=0$

$$
\Longrightarrow \frac{4 x t^{2}-(2 t-x)^{3}}{4 t^{4}}=0 \Longleftrightarrow x^{3}-6 t x^{2}+16 x t^{2}-8 t^{3}=0
$$

For fixed t this condition can be fulfilled for at most three different x, but certainly not for all $0<x \leq t$.

