Differential Equations II for Engineering Students

Homework sheet 3

Exercise 1: Determine the entropy solution to the Burgers' equation $u_{t}+u u_{x}=0$ with the initial data

$$
u(x, 0)= \begin{cases}0 & x<0 \\ 1 & 0 \leq x \leq 1 \\ 0 & x>1\end{cases}
$$

at the time $t=2$. What new problem occurs at $t=2$?

Alternatively: Determine the solution for $t>2$.
Solution sketch: $u_{t}+u u_{x}=0$

$$
u(x, 0)= \begin{cases}0 & x<0 \\ 1 & 0 \leq x \leq 1 \\ 0 & x>1\end{cases}
$$

It is clear that

- the solution is constant along the characteristic lines
- the characteristics are straight lines with the slope $1 / u_{0}$ in the (x, t) - plane

So first of all, we get
$\dot{s}(t)=\frac{1+0}{2}, s(t)=1+\frac{t}{2}:$

$$
u(x, t)= \begin{cases}0 & x \leq 0 \\ \frac{x}{t} & 0 \leq x \leq t \\ 1 & t \leq x \leq 1+\frac{t}{2} \\ 0 & x>1+\frac{t}{2}\end{cases}
$$

This solution is valid until t^{*} with $t^{*}=1+\frac{t^{*}}{2}$, i.e. $t^{*}=2$. At time $t^{*}=2$ the rarefaction wave meets the shock wave. For $t \geq 2$ holds for the discontinuity with
$u_{l}=\frac{x}{t}, \quad u_{r}=0$ and $x=s(t)$ on the discontinuity curve
$\dot{s}(t)=\frac{\frac{s(t)}{t}+0}{2}=\frac{s(t)}{2 t} \quad$ This is an ordinary differential equation for $s(t)$.

$$
\begin{aligned}
& \frac{d s}{s}=\frac{d t}{2 t} \\
& s(2)=2
\end{aligned} \quad \Longrightarrow s=c \sqrt{t}, \quad \Longrightarrow \quad c=\sqrt{2}, s=\sqrt{2 t}
$$

So the discontinuity moves on the curve $x(t)=\sqrt{2 t}$.

$$
u(x, t)= \begin{cases}0 & x \leq 0 \\ \frac{x}{t} & 0 \leq x \leq \sqrt{2 t} \\ 0 & x>\sqrt{2 t}\end{cases}
$$

Exercise 2:

Determine entropy solutions to the differential equation

$$
u_{t}+(f(u))_{x}=0
$$

with the flow function $f(u)=\frac{(u-2)^{4}}{2}$ and initial conditions
a) $u(x, 0)=\left\{\begin{array}{ll}2 & x \leq 0, \\ 1 & 0<x,\end{array}\right.$ and
b) $u(x, 0)= \begin{cases}1 & x \leq 0, \\ 2 & 0<x .\end{cases}$

Note: Only solutions for the given initial values are required. You don't need to give solutions for general initial values!

Solution:

Using usual notation we have $f(u)=\frac{(u-2)^{4}}{2} . \quad$ [1 point]
On the characteristic curves it holds
$\dot{x}(t)=f^{\prime}(u)=2(u-2)^{3}$ and $\dot{u}(t)=0$.
The characteristics are straight lines with the constant slope $2(u(x(0), 0)-2)^{3}$.
In part a), an ambiguity of the solution obtained using the methods of characteristics arises immediately (i.e. already at $t=0$). A shock front $s(t)$ must be introduced with $u_{l}=2$ and $u_{r}=1 \quad$ [1 point]
with
$\dot{s}(t)=\frac{f\left(u_{l}\right)-f\left(u_{r}\right)}{u_{l}-u_{r}}=\frac{\frac{(2-2)^{4}}{2}-\frac{(1-2)^{4}}{2}}{2-1}=-\frac{1}{2} \quad[1$ point $]$
We obtain

$$
u(x, t)= \begin{cases}u_{l}=2 & x<s(t)=-\frac{t}{2} \\ u_{r}=1 & -\frac{t}{2}<x . \quad[\mathbf{1} \text { point }]\end{cases}
$$

For part b) the method of characteristics gives

$$
u(x, t)= \begin{cases}1 & x \leq x_{0}+f^{\prime}\left(u_{l}\right) t=0+2(1-2)^{3} t=-2 t \\ ? & -2 t \leq x \leq 0 \\ 2 & x \geq x_{0}+f^{\prime}\left(u_{r}\right) t=0+2(2-2)^{3} t=0\end{cases}
$$

A rarefaction wave must therefore be introduced. [1 point]
With
$f^{\prime}(u)=2(u-2)^{3}=v \Longrightarrow g(v):=\left(f^{\prime}\right)^{-1}(v)=\left(\frac{v}{2}\right)^{\frac{1}{3}}+2$
we have the solution

$$
u(x, t)= \begin{cases}1 & x \leq-2 t \\ g\left(\frac{x}{t}\right)=\left(\frac{x}{2 t}\right)^{\frac{1}{3}}+2 & -2 t \leq x \leq 0 \\ 2 & x \geq 0\end{cases}
$$

Exercise 3:

We discuss again the simple traffic flow model from Sheet 1 with the notation introduced there:
$u(x, t)=$ density of vehicles (vehicles/length) at point x at time t,
$v(x, t)=$ velocity at point x at time t,
$q(x, t)=$ flow $=$ number of vehicles passing x at time t per time unit.
We improve our model from Sheet 1 by incorporating maximal density and a maximal velocity
$u_{\max }=$ maximal density of vehicles (bumper to bumper),
$v_{\max }=$ maximal velocity
This can be done, for example, as follows:

$$
v(u(x, t))=v_{\max }\left(1-\frac{u(x, t)}{u_{\max }}\right)
$$

a) Set up the continuity equation $\left(u_{t}+q_{x}=0\right)$.
b) Show again that the characteristics are straight lines and determine their slopes.
c) Sketch the characteristics for

$$
\begin{aligned}
v_{\max } & =1 \quad(\text { Here has been scaled appropriately! }) \\
u(x, 0) & =\left\{\begin{array}{ll}
u_{l}=u_{\max } / 2 & x<0 \\
u_{r}=u_{\max } & x>0
\end{array} \quad\right. \text { (red traffic light/traffic jam etc.) }
\end{aligned}
$$

d) For the Burgers' equation we allowed shock waves only in the case $u_{l}>u_{r}$. There must obviously be a different condition here. What could be the reason for that?

Note: This question can not be answered completely only with help of the lecture slides. You can only make a guess here!

Solution hint to Exercise 3:

a) $u_{t}+\left(v_{\max } u\left(1-\frac{u}{u_{\max }}\right)\right)_{x}=u_{t}+\left(v_{\max }\left(u-\frac{u^{2}}{u_{\max }}\right)\right)_{x}=u_{t}+\left(v_{\max }\left(1-\frac{2 u}{u_{\max }}\right)\right) u_{x}=0$
b) On the characteristic $x(t)$ the following applies:
$\dot{x}(t)=\left(v_{\max }\left(1-\frac{2 u}{u_{\max }}\right)\right) \quad$ and $\quad \dot{u}(t)=0$. The characteristic through a point $(x(0), 0)$ has the constant slope in the $x-t-$ plane as a straight line $\left(v_{\max }\left(1-\frac{2 u(x(0), 0)}{u_{\max }}\right)^{-1}\right.$. The characteristics are straight lines again.
c) Sketch of characteristics:

d) The entropy condition from the lecture is only for convex flow functions f (here q). Since f^{\prime} is monotonically decreasing, the entropy condition from the lecture does not apply in our case.
What still applies is the graphic interpretation: No information comes out of the shock wave!! So

$$
f^{\prime}\left(u_{l}\right)>\dot{s}>f^{\prime}\left(u_{r}\right)
$$

Since f^{\prime} is monotonically decreasing, we have the condition for shock waves $u_{l}<u_{r}$.

