Differential Equations II for Engineering Students

Work sheet 2

Exercise 1 (Exam SuSe17, Ex.2a, Hinze/Kiani)
Compute the solution to the following initial value problem for $u(x, t)$:

$$
\begin{array}{lr}
u_{t}+\frac{1}{2} u_{x}=-4 u, & x \in \mathbb{R}, t \in \mathbb{R}^{+}, \\
u(x, 0)=2 \sin (x) & x \in \mathbb{R} .
\end{array}
$$

Solution: With the method of characteristics one computes:

$$
\begin{aligned}
& \left.\frac{d x}{d t}=\frac{1}{2} \Longrightarrow x(t)=\frac{t}{2}+C \Longrightarrow 2 x-t=C \quad \text { [1 point }\right] \\
& \frac{d u}{d t}=-4 u \Longrightarrow \frac{d u}{u}=-4 d t \Longrightarrow \ln (|u|)=-4 t+d \\
& |u|=e^{-4 t} \cdot \tilde{d}, \quad \tilde{d} \in \mathbb{R}^{+}
\end{aligned}
$$

Since $u=0$ is also a solution, we get
$u(x(t), t)=D \cdot e^{-4 t}, \quad D \in \mathbb{R} \quad$ or $\quad D=u \cdot e^{4 t} . \quad[2$ points]
Applying the implicit function theorem we have the general solution:
$D=f(C) \Longrightarrow u \cdot e^{4 t}=f(2 x-t) \Longrightarrow u(x, t)=e^{-4 t} \cdot f(2 x-t) . \quad[1$ point $]$

The initial condition requires:
$u(x, 0)=e^{0} \cdot f(2 x-0) \stackrel{!}{=} 2 \sin (x) \Longrightarrow f(x)=2 \sin \left(\frac{x}{2}\right) . \quad[1$ point $]$
$u(x, t)=2 e^{-4 t} \sin \left(x-\frac{t}{2}\right) . \quad[\mathbf{1}$ point $]$

Exercise 2:

Determine the solution $u(x, y)$ to the following differential equation

$$
x u_{x}+\frac{y}{2} u_{y}=u
$$

that satisfies the condition $u(1, y)=1+y^{2}, \quad y \in \mathbb{R}$.

Solution 2:

a) $x u_{x}+\frac{y}{2} u_{y}=u, \quad u(1, y)=1+y^{2}$

With x as a parameter one computes for $x \neq 0$ for the equation $u_{x}+\frac{y}{2 x} u_{y}=\frac{u}{x}$

$$
\begin{array}{ll}
\frac{d y}{d x}=\frac{y}{2 x} & \Longrightarrow \frac{2 d y}{y}=\frac{d x}{x} \\
\Longrightarrow 2 \ln |y|=\ln |x|+c & \Longrightarrow e^{2 \ln |y|}=e^{\ln |x|+c} \\
\Longrightarrow y^{2}=c_{1} \cdot x & \Longrightarrow c_{1}=\frac{y^{2}}{x} \\
\frac{d u}{d x}=\frac{u}{x} & \Longrightarrow \frac{d u}{u}=\frac{d x}{x} \\
\ln |u|=\ln |x|+d & \Longrightarrow u=c_{2} \cdot x \Longrightarrow c_{2}=\frac{u}{x} \\
c_{2}=f\left(c_{1}\right) & \Longrightarrow \frac{u}{x}=f\left(\frac{y^{2}}{x}\right) \Longrightarrow u(x, y)=x \cdot f\left(\frac{y^{2}}{x}\right)
\end{array}
$$

This is the general solution. Now determine f using the initial condition: Insert $u(1, y)=1+y^{2}$ into the general solution

$$
\begin{aligned}
& u(x, y)=x \cdot f\left(\frac{y^{2}}{x}\right) \\
& u(1, y)=1 \cdot f\left(\frac{y^{2}}{1}\right)=f\left(y^{2}\right) \stackrel{!}{=} 1+y^{2}
\end{aligned}
$$

Also $f(\mu)=1+\mu$ and thus

$$
u(x, y)=x \cdot f\left(\frac{y^{2}}{x}\right)=x \cdot\left(1+\frac{y^{2}}{x}\right)=x+y^{2}
$$

One can now determine that the solution for all $x \in \mathbb{R}$ satisfies the ODE + initial condition. So the constraint $x \neq 0$ can be omitted.

ALTERNATIVELY:

Auxiliary problem $x U_{x}+\frac{y}{2} U_{y}+u U_{u}=0$

$$
\left\{\begin{array}{l}
\dot{x}=x \quad \Longrightarrow \quad x=c_{1} e^{t} \\
\dot{y}=\frac{y}{2} \quad \Longrightarrow \quad y=c_{2} e^{\frac{t}{2}} \\
\dot{u}=u \quad \Longrightarrow \quad u=c_{3} e^{t}
\end{array}\right.
$$

It holds (with suitable constants)

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=c y^{2} \\
u=d x
\end{array}\right. \\
& c=\frac{x}{y^{2}}, \quad d=\frac{u}{x}, \quad \phi\left(\frac{x}{y^{2}}, \frac{u}{x}\right)=0
\end{aligned}
$$

Assuming solvability, we have

$$
\frac{u}{x}=\psi\left(\frac{x}{y^{2}}\right) \quad u=x \cdot \psi\left(\frac{x}{y^{2}}\right)
$$

additionally should hold $\quad u(1, y)=\psi\left(\frac{1}{y^{2}}\right)=y^{2}+1$

$$
\Longrightarrow \psi(\mu)=\frac{1}{\mu}+1 \Longleftrightarrow \psi\left(\frac{x}{y^{2}}\right)=\frac{y^{2}}{x}+1 \Longrightarrow u=y^{2}+x
$$

Exercise 3: (only for people who compute fast)
Given the following initial value problem

$$
\begin{gathered}
u_{t}+3 u \cdot u_{x}=0, \quad x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
u(x, 0)=\left\{\begin{array}{cc}
0 & \forall x \leq 0 \\
\frac{1}{3} & \forall x>0
\end{array}\right.
\end{gathered}
$$

a) Write down the system of characteristic equations.
b) Are the characteristics straight lines?
c) Draw the characteristics through the points $\left(x_{k}, 0\right):=(k, 0)$ for $k \in\{-3,-2,-1,0,1,2,3\}$.
Compute the values of the solution along these characteristics.
d) Using parts a)-c), can you obtain the values of $u(x, t)$ in the points $(-1,2),(1,2)$ and $(3,2)$?

Solution:

a) Extended problem $U_{t}+(3 u) U_{x}+0 \cdot U_{u}=0$ implies:

$$
\begin{gathered}
\frac{d x}{d t}=3 u, \quad \frac{d u}{d t}=0 \quad \Longrightarrow \\
u=C, \quad d x=3 C d t \\
\Longrightarrow x(t)=3 C t+D=3 u t+D \Longrightarrow D=x-3 u t .
\end{gathered}
$$

b) The characteristics are straight lines because it holds $\frac{d u}{d t}=0 \quad \Longrightarrow u$ is therefore constant along every characteristic. Also, it holds $\frac{d x}{d t}=3 u \quad \Longrightarrow$ so $\frac{d x}{d t}$ is constant along the characteristic. i.e. the slope of the characteristics is constant. These are straight lines.
c) Sketch

d) From the sketch one takes $u(x, t)=0, \forall x \leq 0$. So in particular, we have $u(-1,2)=0$. Furthermore, from the sketch we have $u(x, t)=\frac{1}{3}, \forall x>t$. So we obtain $u(3,2)=\frac{1}{3}$. The characteristics do not help to determine the solution values $u(x, t)$ for $0<x<t$, so for example for $u(1,2)$.
The solution to this problem is discussed on the next sheet!
Discussion: 25.04.-29.04.2022

