Differential Equations II for Engineering Students Work sheet 1

Exercise 1: (Repetition of DGL I)
a) Let λ be any fixed real number. Determine a real representation of the general solution to the differential equation

$$
y^{\prime \prime}(t)-\lambda y(t)=0
$$

b) Let L be another fixed positive real number. Determine all solutions to the boundary value problem

$$
y^{\prime \prime}(t)-\lambda y(t)=0 \quad y(0)=y(L)=0
$$

For which $\lambda \in \mathbb{R}$ does the boundary value problem have nontrivial solutions?
The λ-values for which there exist non-trivial solutions (i.e. solutions that are not constantly equal to zero) are called eigenvalues of the problem. The corresponding solutions are called eigenfunctions.
Remark: The solutions to this eigenvalue problem will be needed again and again during the semester!

Solution hints for the exercise 1:

a) Following DGL I, we calculate the characteristic polynomial : $\mu^{2}-\lambda=0$ with the zeros

$$
\mu_{1,2}= \pm \sqrt{\lambda} \Longrightarrow y(t)= \begin{cases}c_{1} e^{\sqrt{\lambda} t}+c_{2} e^{-\sqrt{\lambda} t} & \lambda>0 \\ c_{1}+c_{2} t & \lambda=0 \\ c_{1} \cos (\sqrt{-\lambda} t)+c_{2} \sin (\sqrt{-\lambda} t) & \lambda<0\end{cases}
$$

b) For case $\lambda>0$, from the boundary value for $t=0$ it follows immediately that $c_{2}=-c_{1}$. The boundary value at L yields:
$c_{1}\left(e^{\sqrt{\lambda} L}-e^{-\sqrt{\lambda} L}\right)=0 \Longrightarrow c_{1}\left(e^{2 \sqrt{\lambda} L}-1\right)=0 \Longrightarrow c_{1}=0$
In this case there exist only the trivial solution $y(t)=0$
For case $\lambda=0$, the solution is a linear function. The only linear function that exists in $t=0$ and also disappears in $t=L>0$ is again the trivial solution.
For case $\lambda<0$, from the boundary value for $t=0$ it follows immediately that $c_{1}=0$. The boundary value in L yields:

$$
c_{2} \sin (\sqrt{-\lambda} L)=0 \Longrightarrow c_{2}=0 \vee \sqrt{-\lambda} L=k \pi
$$

Non-trivial solutions only exist for $\lambda=-\left(\frac{k \pi}{L}\right)^{2}$.

Exercise 2: (Repetition of Analysis II)
Determine the appropriate real Fourier series for the following functions:
a) Odd $2 L$-periodic continuation of

$$
f:[0,1[\rightarrow \mathbb{R}, \quad f(x)=\sin (4 \pi x)+2 \sin (6 \pi x) \quad L=1
$$

b) Even $2 L$-periodic continuation of $f:\left[-\frac{\pi}{4}, \frac{5 \pi}{4}[\rightarrow \mathbb{R}, \quad L=\pi\right.$ with

$$
f(t)= \begin{cases}2, & -\frac{\pi}{4} \leq t<\frac{\pi}{4} \\ 0, & \frac{\pi}{4} \leq t<\frac{3 \pi}{4} \\ 2, & \frac{3 \pi}{4} \leq t<\frac{5 \pi}{4}\end{cases}
$$

Remark: For DGL II you will need to know how to calculate Fourier series. Please repeat if necessary!

Solution hint to Exercise 2:

a) Since the function $f(x)$ is continued oddly, a Fourier sine series is used. Since $2 L$ is a period of the function, one chooses $2 L$-periodic sine functions. So we define a series in the form

$$
\begin{gathered}
F(x)=\sum_{k=1}^{\infty} b_{k} \sin \left(k \frac{2 \pi}{2 L} x\right) \\
L=1 \Longrightarrow F(x)=\sum_{k=1}^{\infty} b_{k} \sin (k \pi x)
\end{gathered}
$$

Due to orthogonality relations between the $\sin (k \pi x)$ and $\sin (l \pi x)$ (see Mathe II) and by assuming that the Fourier series is as good as possible approximation of f, we have

$$
b_{4}=1, \quad b_{6}=2, \quad b_{k}=0 \quad \text { otherwise } .
$$

b) Since function $f(t)$ is continued evenly, a Fourier cosine series is used. Since $2 L$ is a period of the function, one chooses $2 L$-periodic cosine functions. In general we define the series as

$$
F(t)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos \left(k \frac{2 \pi}{2 L} t\right) .
$$

In our special case, we have that the continuation is even π - periodic. So we can write the series in the following form

$$
F(t)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos \left(k \frac{2 \pi}{\pi} t\right)
$$

Following Analysis II, and since $T=\pi$, we have for the coefficients

$$
\begin{aligned}
a_{k} & =\frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} f(t) \cos (k \omega t) d t \\
& =\frac{4}{\pi} \int_{0}^{\frac{\pi}{4}} 2 \cdot \cos \left(k \frac{2 \pi}{\pi} t\right) d t+\frac{4}{\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 0 \cdot \cos \left(k \frac{2 \pi}{\pi} t\right) d t \\
& =\frac{8}{\pi} \int_{0}^{\frac{\pi}{4}} \cos (2 k t) d t
\end{aligned}
$$

For $k=0$ it holds

$$
a_{0}=\frac{8}{\pi} \int_{0}^{\frac{\pi}{4}} 1 d t=\frac{8}{\pi}[t]_{0}^{\frac{\pi}{4}}=2
$$

and for $k>0$ we obtain

$$
a_{k}=\frac{8}{\pi} \int_{0}^{\frac{\pi}{4}} \cos (2 k t) d t=\frac{4}{\pi}\left[\frac{1}{k} \sin (2 k t)\right]_{0}^{\frac{\pi}{4}}=\frac{4}{\pi k} \sin \left(\frac{k \pi}{2}\right) .
$$

Hence

$$
a_{k}= \begin{cases}2 & k=0 \\ 0 & k=2 m, m \in \mathbb{N} \\ \frac{4(-1)^{m}}{\pi(2 m+1)} & k=2 m+1, m \in \mathbb{N}_{0}\end{cases}
$$

so

$$
a_{0}=2 \quad a_{1}=\frac{4}{\pi} \quad a_{3}=-\frac{4}{3 \pi} \quad a_{5}=\frac{4}{5 \pi} \cdots
$$

The first four non-vanishing summands of the Fourier series are e.g.

$$
1+\frac{4}{\pi} \cos (2 t)-\frac{4}{3 \pi} \cos (6 t)+\frac{4}{5 \pi} \cos (10 t) .
$$

