Dr. H. P. Kiani, Sofiya Onyshkevych

Differential Equations II for Engineering Students

Homework sheet 1

Exercise 1: (Repetition Analysis II)

For the derivation of parameter-dependent integrals for sufficiently smooth f holds the Leibniz-Rule :

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(x, t) d t=\int_{a(x)}^{b(x)} \frac{d}{d x} f(x, t) d t+b^{\prime}(x) f(x, b(x))-a^{\prime}(x) f(x, a(x))
$$

Find the derivative of the function $F(x)$ defined as

$$
F(x):=\int_{-x}^{x^{2}} e^{x t} d t
$$

and compute $\lim _{x \rightarrow 0} F^{\prime}(x)$.

Solution to Exercise 1:
$F(x)=\int_{-x}^{x^{2}} e^{x t} d t, \quad b(x):=x^{2}, a(x):=-x, f(t, x):=e^{x t}$

$$
\begin{array}{cc}
b^{\prime}(x)=2 x & a^{\prime}(x)=-1 \\
f(b(x), x)=e^{x^{3}} & f(a(x), x)=e^{-x^{2}}
\end{array}
$$

$$
\begin{aligned}
F^{\prime}(x) & =\int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(t, x) d t+b^{\prime}(x) f(b(x), x)-a^{\prime}(x) f(a(x), x) \\
& =\int_{-x}^{x^{2}} t e^{x t} d t+2 x e^{x^{3}}+e^{-x^{2}} \\
& =\left[\frac{t}{x} e^{t x}\right]_{-x}^{x^{2}}-\int_{-x}^{x^{2}} \frac{1}{x} e^{x t} d t+2 x e^{x^{3}}+e^{-x^{2}} \\
& =3 x e^{x^{3}}+2 e^{-x^{2}}-\frac{1}{x^{2}}\left[e^{t x}\right]_{-x}^{x^{2}}=3 x e^{x^{3}}+2 e^{-x^{2}}-\frac{1}{x^{2}}\left(e^{x^{3}}-e^{-x^{2}}\right)
\end{aligned}
$$

Substitution/ L'Hospital gives:

$$
F^{\prime}(0)=0+2-\lim _{x \rightarrow 0} \frac{1}{x^{2}}\left(e^{x^{3}}-e^{-x^{2}}\right)=2-\lim _{x \rightarrow 0} \frac{3 x^{2} e^{x^{3}}+2 x e^{-x^{2}}}{2 x}=2-1=1 .
$$

Exercise 2:

A simple traffic flow model:
We consider a one-dimensional flow of vehicles along an infinitely long, single-lane road. In a so-called macroscopic model, one does not consider individual vehicles, but the total flow of vehicles. For this purpose, we introduce the following quantities:
$u(x, t)=$ (length-)density of the vehicles at the point x at the time t
$=$ vehicles/unit length at point x at the time t
$v(x, t)=$ speed at the point x at the time t,
$q(x, t)=u(x, t) \cdot v(x, t)=$ flow
$=$ amount of vehicles passing the point x at the time t per unit time
a) Assume that there are no entrances or exits, no vehicles are disappearing, and no new vehicles are appearing. Let $N(t, a, \Delta a):=$ number of vehicles on a space interval $[a, a+\Delta a]$ at the time t.
Then on the one hand it holds that

$$
N(t, a, \Delta a)=\int_{a}^{a+\Delta a} u(x, t) d x
$$

and on the other hand it also holds

$$
N(t, a, \Delta a)-N\left(t_{0}, a, \Delta a\right)=\int_{t_{0}}^{t} q(a, \tau)-q(a+\Delta a, \tau) d \tau
$$

Derive from this the so-called conservation equation for the mass (number of vehicles)

$$
u_{t}+q_{x}=0 .
$$

Hints on how to proceed:

- Derive both formulas for N with respect to t. Please note that for the derivation of parameter-dependent integrals with sufficiently smooth f holds the Leibniz rule:

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(x, t) d t=\int_{a(x)}^{b(x)} \frac{d}{d x} f(x, t) d t+b^{\prime}(x) f(x, b(x))-a^{\prime}(x) f(x, a(x))
$$

- Divide by Δa.
- Consider the limit $\Delta a \rightarrow 0$.
b) Additionally assume that the velocity depends only on the density: $v=v(u)$. Show that in this case the equation

$$
\frac{\partial u}{\partial t}+\frac{d q}{d u} \cdot \frac{\partial u}{\partial x}=0
$$

describes the conservation of mass.
c) We now assume in a first simple model that the speed increases in inverse proportion to the density and that the density is positive.

$$
v(x, t)=c+\frac{k}{u(x, t)}
$$

What is the continuity equation (=conservation equation for the mass)?
d) Solve the continuity equation derived in part c) for $c=3$ and the initial condition $u(x, 0)=e^{-x^{2}}$.
Show that every sufficiently smooth function $u(x, t)=f(x-c t)$ solves the differential equation. Define f such that the initial condition is satisfied.

Solution:

a) On the one hand, it holds $\quad N(t)=\int_{a}^{a+\Delta a} u(x, t) d x$ and on the other hand $\quad N(t)-N\left(t_{0}\right)=\int_{t_{0}}^{t} q(a, \tau)-q(a+\Delta a, \tau) d \tau$.
Differentiating with respect to t gives

$$
\frac{\partial}{\partial t} N(t)=\frac{\partial}{\partial t} \int_{a}^{a+\Delta a} u(x, t) d x=q(a, t)-q(a+\Delta a, t)
$$

Letting Δa to zero, and with sufficient smoothness of the functions, we have

$$
\begin{aligned}
& \lim _{\Delta a \rightarrow 0} \frac{1}{\Delta a} \int_{a}^{a+\Delta a} \frac{\partial}{\partial t} u(x, t) d x=\lim _{\Delta a \rightarrow 0}-\frac{q(a+\Delta a, t)-q(a, t)}{\Delta a} \\
& \Longrightarrow \frac{\partial}{\partial t} u(a, t)=-\frac{\partial}{\partial a} q(a, t)
\end{aligned}
$$

Since these considerations hold at every point, we have the continuity equation

$$
u_{t}+q_{x}=0 .
$$

b) Actually is straightforward, since in this case we have $q(x, t)=u(x, t) \cdot v(u(x, t))$. The flow q is therefore a function of $u(x, t)$. The assertion then follows from the chain rule.
In more details:
With $q(x, t)=u(x, t) \cdot v(u(x, t))$ we have

$$
\frac{d q}{d u} \cdot \frac{\partial u}{\partial x}=\frac{d}{d u}(u \cdot v(u)) \cdot u_{x}=\left(v(u)+u \cdot v_{u}\right) \cdot u_{x}
$$

and on the other hand it holds

$$
\frac{\partial}{\partial x} q(x, t)=\frac{\partial}{\partial x}(u(x, t) \cdot v(u(x, t)))=u_{x} \cdot v(u)+u \cdot v_{u} \cdot u_{x}
$$

c)

$$
v(x, t)=c+\frac{k}{u(x, t)} \quad q(x, t)=c \cdot u(x, t)+k
$$

From the continuity equation from part b) we have

$$
\frac{\partial u}{\partial t}+\frac{d q}{d u} \cdot \frac{\partial u}{\partial x}=\frac{\partial u}{\partial t}+c \cdot \frac{\partial u}{\partial x}=0
$$

The linear transport equation is thus obtained.
d) We have to solve the equation from part c)

$$
u_{t}+3 u_{x}+=0 .
$$

With the ansatz $u(x, t)=f(x-3 t)$ it holds

$$
u_{t}(x, t)=f^{\prime}(x-3 t) \cdot(-3), \quad u_{x}(x, t)=f^{\prime}(x-3 t)
$$

and hence $u_{t}+3 u_{x}=0$.
The initial condition requires:

$$
u(x, 0)=f(x) \stackrel{!}{=} e^{-x^{2}} \Longrightarrow u(x, t)=f(x-3 t)=e^{-(x-3 t)^{2}}
$$

Note : This is a very simple, linearized model. For example, it allows for any density and any speed. A somewhat more realistic problem would already produce shock and rarefaction waves (see later exercises).

Submission: 11.-15.04.22

