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Exercise 1: (Repetition Analysis II)

For the derivation of parameter-dependent integrals for sufficiently smooth f holds the
Leibniz—Rule :

d b(x) b(x)

d , /
dz [, TDd= / o, @ @i+ V@ f@b(e) (@) fa(a)

Find the derivative of the function F'(z) defined as

F(z) = /ext dt

—x

and compute lim F'(z).
z—0

Solution to Exercise 1:

F(z) = / e dt, b(z) == 2%, a(z) = —x, f(t,z):=e"
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Substitution/ L’Hospital gives:

1 2 3x%e” + 2we™
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Exercise 2:

A simple traffic flow model:

We consider a one-dimensional flow of vehicles along an infinitely long, single-lane road. In
a so-called macroscopic model, one does not consider individual vehicles, but the total flow
of vehicles. For this purpose, we introduce the following quantities:

u(z,t) = (length-)density of the vehicles at the point x at the time ¢
= vehicles/unit length at point x at the time ¢

v(z,t) = speed at the point z at the time ¢,

q(z,t) = u(x,t)-v(z,t) = flow

= amount of vehicles passing the point x at the time ¢ per unit time

a) Assume that there are no entrances or exits, no vehicles are disappearing, and no
new vehicles are appearing. Let N(t,a, Aa) := number of vehicles on a space interval
[a,a + Aa] at the time t.

Then on the one hand it holds that
a+Aa
N(t,a,Aa) = / u(z,t) de
and on the other hand it also holds

¢
N(t,a,Aa) — N(tg,a,Aa) = / q(a,7) — q(a + Aa, T)dr .

to

Derive from this the so-called conservation equation for the mass (number of vehicles)

Hints on how to proceed:

e Derive both formulas for N with respect to t. Please note that for the derivation
of parameter-dependent integrals with sufficiently smooth f holds the Leibniz
rule:

d b() b@) g / |
dr J,, 4= / o, a @D+ V@) f@be) @) f@a@)

e Divide by Aa.

e Consider the limit Aa — 0.

b) Additionally assume that the velocity depends only on the density:
v = v(u) . Show that in this case the equation

ou dq Ou
ot Tau or Y

describes the conservation of mass.
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¢) We now assume in a first simple model that the speed increases in inverse proportion
to the density and that the density is positive.

v(x,t) = ¢ + e

What is the continuity equation (=conservation equation for the mass)?

d) Solve the continuity equation derived in part c¢) for ¢ = 3 and the initial condition
u(x,0) = e

Show that every sufficiently smooth function u(x,t) = f(z—ct) solves the differential equation.
Define f such that the initial condition is satisfied.

Solution:
a+Aa
a) On the one hand, it holds N(t) = / u(z,t) dz

t
and on the other hand N(t) — N(to) = / q(a,7) — q(a + Aa,T)dr .

to
Differentiating with respect to ¢ gives
o ) at+Aa
5% N(t) = 5 /a u(z,t)dr = q(a,t) — q(a + Aa,t)

Letting Aa to zero, and with sufficient smoothness of the functions, we have

1 o8 9 q(a+ Aa,t) — q(a,t)

lim — — — lim — ’ ’
fm, g [ geeds= Aa

0 0
= —ula,t) = ——qla,l).

ot (a.%) da ata, )
Since these considerations hold at every point, we have the continuity equation
U+ ¢q, =0.

b) Actually is straightforward, since in this case we have ¢(x,t) = u(x,t)-v(u(z,t)). The
flow ¢ is therefore a function of wu(x,t). The assertion then follows from the chain
rule.

In more details:

With ¢(z,t) = u(x,t) - v(u(x,t)) we have

dq Ou d

S e vw) s = (o) + ) g
and on the other hand it holds

0

p q(z,t) = % (u(z,t) - v(u(z, 1)) =ug - v(u) + - vy - Uy .
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c)

v(z,t) = ¢ +

e q(z,t) = c-ulx,t) + k

From the continuity equation from part b) we have

Ou dq Ou  Ju ou

ot T e T e Y

The linear transport equation is thus obtained.

d) We have to solve the equation from part c)
u; + 3uz+ = 0.
With the ansatz u(x,t) = f(z — 3t) it holds
u(z,t) = f'(z — 3t) - (—=3), uz(x,t) = f'(x — 3t)
and hence u; + 3u, = 0.
The initial condition requires:

u(z,0) = f(z) = e = u(z,t) = f(z — 3t) = e~@30”,

Note : This is a very simple, linearized model. For example, it allows for any density
and any speed. A somewhat more realistic problem would already produce shock and
rarefaction waves (see later exercises).
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