Differential Equations II for Engineering Students

Work sheet 7

Exercise 1:

Given the following initial boundary value problem for $u=u(x, t)$:

$$
\begin{array}{ll}
u_{t t}-4 u_{x x}=e^{-t}\left(1-\frac{x}{3}\right) & x \in(0,3), t>0, \\
u(x, 0)=1+2 \sin (\pi x) & x \in[0,3], \\
u_{t}(x, 0)=\frac{x}{3} & x \in(0,3), \tag{1}\\
u(0, t)=e^{-t} & t \geq 0, \\
u(3, t)=1 & t \geq 0 .
\end{array}
$$

a) Show that the homogenization of the boundary data according to

$$
v=u-e^{-t}-\frac{x}{3}\left(1-e^{-t}\right)
$$

leads to the following initial boundary value problem for v :

$$
\begin{array}{ll}
v_{t t}-4 v_{x x}=0 & x \in(0,3), t>0, \\
v(x, 0)=2 \sin (\pi x) & x \in[0,3], \\
v_{t}(x, 0)=1 & x \in(0,3), \tag{2}\\
v(0, t)=0 & t \geq 0, \\
v(3, t)=0 & t \geq 0 .
\end{array}
$$

b) Solve the initial boundary value problem (2) from part a) and compute the solution to the initial boundary value problem (1).

Exercise 2:

For the numerical solution of a differential equation for $u(x, t), x \in] 0,(n+1) \Delta x[, t>0$ with given initial data at $t=0$ and boundary data at $x=0$ and $x=(n+1) \Delta x$ the following grid is defined

$$
x_{j}=j \cdot \Delta x, \quad j=0,1, \ldots, n+1, \quad t_{m}=m \cdot \Delta t, \quad m=0,1,2, \ldots
$$

u_{j}^{m} is an approximation of $u\left(x_{j}, t_{m}\right)$.
Which PDEs are approximated by the following difference equations with the corresponding initial data $(m=0)$ and boundary data $(j=0$ or $j=n+1)$?

For $j=0, \ldots, N$ and $m=1,2,3 \ldots$:
a) $\frac{u_{j}^{m+1}-u_{j}^{m}}{\Delta t}+c \frac{u_{j}^{m}-u_{j-1}^{m}}{\Delta x}=0$,
b) $\frac{u_{j}^{m+1}-u_{j}^{m}}{\Delta t}+c \frac{u_{j}^{m+1}-u_{j-1}^{m+1}}{\Delta x}=0$,
c) $\frac{u_{j}^{m+1}-2 u_{j}^{m}+u_{j}^{m-1}}{\Delta t^{2}}=\frac{u_{j+1}^{m+1}-2 u_{j}^{m+1}+u_{j-1}^{m+1}}{\Delta x^{2},}$
d) $\frac{u_{j}^{m+1}-u_{j}^{m}}{\Delta t}+c \frac{u_{j+1}^{m}-u_{j-1}^{m}}{2 \Delta x}=\frac{u_{j+1}^{m}-2 u_{j}^{m}+u_{j-1}^{m}}{\Delta x^{2}}$
e) $\frac{u_{j}^{m+1}-u_{j}^{m}}{\Delta t}+c \frac{u_{j}^{m}-u_{j-1}^{m}}{\Delta x}=\frac{u_{j+1}^{m+1}-2 u_{j}^{m+1}+u_{j-1}^{m+1}}{\Delta x^{2}}$

For which difference equations can the data at time point $m+1$ be calculated directly if the data at time m is known? So which method is an explicit method?

Discussion: 11.07. - 15.07.2022

