Differential Equations II for Engineering Students

Homework sheet 6

Exercise 1:

a) Solve the initial value problem

$$
\begin{aligned}
u_{t t} & =u_{x x}, & & \text { on } \mathbb{R}^{2}, \\
u(x, 0) & =2 \sin (4 \pi x) & & x \in \mathbb{R}, \\
u_{t}(x, 0) & =\cos (\pi x) & & x \in \mathbb{R} .
\end{aligned}
$$

b) Given the problem

$$
\begin{aligned}
u_{t t} & =9 u_{x x}, \quad \text { for } x \in \mathbb{R}, t>0, \\
u(x, 0) & =f(x)= \begin{cases}2 & -1 \leq x \leq 1 \\
0 & \text { otherwise }\end{cases} \\
u_{t}(x, 0) & =0
\end{aligned}
$$

Sketch the obtained solution using d'Alembert's formula for

$$
t=0, \frac{1}{6}, \frac{1}{3}, \frac{2}{3}, 1 .
$$

Exercise 2:

The following problem is given for $u(x, y, t)$.

$$
\begin{array}{rlrl}
u_{t} & =u_{x x}+u_{y y}, & x, y \in(0, \pi), t>0, \\
u(0, y, t)) & =u(\pi, y, t)=0, & \text { for } y \in(0, \pi), t>0, \\
u(x, 0, t)) & =u(x, \pi, t)=0, & \text { for } x \in(0, \pi), t>0, \\
u(x, y, 0) & =\frac{1}{2}(\sin (2 x)+\sin (x)) \sin (y) & & \text { for } x, y \in(0, \pi) .
\end{array}
$$

a) Using the ansatz $u(x, y, t)=T(t) \cdot X(x) \cdot Y(y)$ for the solution of the differential equation, derive three decoupled ordinary differential equations for X, Y and T.
b) Derive first from the boundary values

$$
\begin{array}{ll}
u(0, y, t)=u(\pi, y, t)=0, & \text { for } y \in[0, \pi], t>0 \\
u(x, 0, t)=u(x, \pi, t)=0, & \text { for } x \in[0, \pi], t>0
\end{array}
$$

the boundary conditions for the solutions of the differential equations for X and Y, and solve the obtained ordinary boundary value problems for X and Y.
Then determine the appropriate functions $T(t)$.
c) Determine a series representation of the solution u to the original problem and fit it to the initial values

$$
u(x, y, 0)=\frac{1}{2}(\sin (2 x)+\sin (x)) \sin (y) \quad \text { for } x, y \in[0, \pi] .
$$

How does the solution behave for $t \rightarrow \infty$?

