Differential Equations II for Engineering Students

Work sheet 4

Exercise 1:

Determine the type of the following differential equations
a) $u_{x x}+4 u_{x t}-5 u_{t t}=0$,
b) $10 u_{x x}+6 u_{x y}+u_{y y}=0$
c) $4 x^{2} u_{x x}+8 x y u_{x y}+y^{2} u_{y y}+2 x u_{x}=0$

Exercise 2:

Determine all rotationally symmetrical solutions of the following boundary value problem

$$
\begin{aligned}
\Delta u & =-\frac{1}{\sqrt{x^{2}+y^{2}}} \text { for } 1<x^{2}+y^{2}<9, \\
u(x, y) & =1 \quad \text { on } x^{2}+y^{2}=1 \\
u(x, y) & =2 \quad \text { on } x^{2}+y^{2}=9 .
\end{aligned}
$$

Note: Laplace equation in polar coordinates is given by $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\varphi \varphi}=0$.
Rotationally symmetrical means that it does not depend on ϕ.

Exercise 3: Only for very fast students

a) Let u be the solution of the boundary value problem

$$
\begin{aligned}
\Delta u & =-1 & & |x|<1,|y|<1, \\
u(x, y) & =0 & & |x|=1 \text { or }|y|=1
\end{aligned}
$$

and $v(x, y)=u(x, y)+\frac{1}{4}\left(x^{2}+y^{2}\right)$.
Show that $v(x, y)$ solves Laplace equation, and determine the upper and lower bounds for $u(0,0)$.
b) Let $u(x, y)$ is a solution to the problem:

$$
\begin{array}{rlrl}
\Delta u & =0, & \text { in } \Omega:=] 0,2[\times] 0,1[\\
u(x, y) & =3 x^{2} & & \text { on } \partial \Omega .
\end{array}
$$

Determine, without computing u, for each of the following statements whether it is true. Explain your answers.

- It holds $\max _{(x, y) \in \bar{\Omega}} u(x, y)=2$.
- It holds $\min _{(x, y) \in \bar{\Omega}} u(x, y)=0$.
- $u(x, y)=3 x^{2}-3 y^{2}$ is a solution to the boundary value problem.

Discussion: 30.05.-03.06.2022

