Differential Equations II for Engineering Students Homework sheet 4

Exercise 1: Given a differential equation

$$2u_{xx} + 4u_{xy} + 2u_{yy} + \sqrt{2}(u_x + u_y) = 0.$$

- a) Determine the type of the equation.
- b) Transform the equation to its normal form.
- c) Determine the general solution of the transformed differential equation and perform the backwards transformation.

Exercise 2:

Given the initial value problem

$$u_{tt} + u_{xt} - 2u_{xx} = 0 \quad \text{for } x \in \mathbb{R}, \ t \in \mathbb{R}^+$$
$$u(x, 0) = \cos(x) \quad \text{for } x \in \mathbb{R},$$
$$u_t(x, 0) = -4\sin(x). \quad \text{for } x \in \mathbb{R}.$$

Solve the problem using the substitution $\alpha = x + t$, $\mu = x - 2t$.

Note: The procedure is analogous to the derivation of the solution to the Cauchy problem for the wave equation from the lecture. Alternatively: convert the derivatives in terms of x, tinto derivatives in terms of α, μ .

Exercise 3:

- a) For which real values of α and for which real-valued functions $g : \mathbb{R} \to \mathbb{R}$ are the following functions harmonic in \mathbb{R}^2 ?
 - i) $\tilde{u}(x,y) = \cos(\alpha x) \cdot e^{3y}$, ii) $\hat{u}(x,y) = \sin(\alpha x) \cdot \cosh(3y)$ iii) $u(x,y) = \frac{1}{2} \cdot (x^3 + g(x) \cdot y^2)$.
- b) Let $\Omega := \{(x,y)^T \in \mathbb{R}^2 : x^2 + y^2 < 16\}$ and u be the solution of boundary value problem

$$\Delta u(x,y) = 0$$
 in Ω , $u(x,y) = \frac{2y^2}{x^2 + y^2}$ on $\partial \Omega$.

Determine the value of u in the origin.

Note:
$$\sin^2(\varphi) = \frac{1 - \cos(2\varphi)}{2}$$
.

Submission deadline: 30.05.-03.06.2022