Differential Equations II for Engineering Students

Homework sheet 3

Exercise 1: Determine the entropy solution to the Burgers' equation $u_{t}+u u_{x}=0$ with the initial data

$$
u(x, 0)= \begin{cases}0 & x<0 \\ 1 & 0 \leq x \leq 1 \\ 0 & x>1\end{cases}
$$

at the time $t=2$. What new problem occurs at $t=2$?

Alternatively: Determine the solution for $t>2$.

Exercise 2:

Determine entropy solutions to the differential equation

$$
u_{t}+(f(u))_{x}=0
$$

with the flow function $f(u)=\frac{(u-2)^{4}}{2}$ and initial conditions
a) $u(x, 0)=\left\{\begin{array}{ll}2 & x \leq 0, \\ 1 & 0<x,\end{array}\right.$ and
b) $u(x, 0)= \begin{cases}1 & x \leq 0, \\ 2 & 0<x .\end{cases}$

Note: Only solutions for the given initial values are required. You don't need to give solutions for general initial values!

Exercise 3:

We discuss again the simple traffic flow model from Sheet 1 with the notation introduced there:
$u(x, t)=$ density of vehicles (vehicles/length) at point x at time t,
$v(x, t)=$ velocity at point x at time t,
$q(x, t)=$ flow $=$ number of vehicles passing x at time t per time unit.
We improve our model from Sheet 1 by incorporating maximal density and a maximal velocity

$$
\begin{aligned}
& u_{\max }=\text { maximal density of vehicles (bumper to bumper) } \\
& v_{\max }=\text { maximal velocity }
\end{aligned}
$$

This can be done, for example, as follows:

$$
v(u(x, t))=v_{\max }\left(1-\frac{u(x, t)}{u_{\max }}\right)
$$

a) Set up the continuity equation $\left(u_{t}+q_{x}=0\right)$.
b) Show again that the characteristics are straight lines and determine their slopes.
c) Sketch the characteristics for

$$
\begin{aligned}
v_{\max } & =1 \quad \text { (Here has been scaled appropriately!) } \\
u(x, 0) & =\left\{\begin{array}{ll}
u_{l}=u_{\max } / 2 & x<0 \\
u_{r}=u_{\max } & x>0
\end{array}\right. \text { (red traffic light/traffic jam etc.) }
\end{aligned}
$$

d) For the Burgers' equation we allowed shock waves only in the case $u_{l}>u_{r}$. There must obviously be a different condition here. What could be the reason for that?
Note: This question can not be answered completely only with help of the lecture slides. You can only make a guess here!

