Differential Equations II for Engineering Students

Work sheet 2

Exercise 1 (Exam SuSe17, Ex.2a, Hinze/Kiani)
Compute the solution to the following initial value problem for $u(x, t)$:

$$
\begin{array}{lr}
u_{t}+\frac{1}{2} u_{x}=-4 u, & x \in \mathbb{R}, t \in \mathbb{R}^{+}, \\
u(x, 0)=2 \sin (x) & x \in \mathbb{R} .
\end{array}
$$

Exercise 2:

Determine the solution $u(x, y)$ to the following Differentialgleichung

$$
x u_{x}+\frac{y}{2} u_{y}=u
$$

that satisfies the condition $u(1, y)=1+y^{2}, \quad y \in \mathbb{R}$.
Exercise 3: (only for people who compute fast)
Given the following initial value problem

$$
\begin{gathered}
u_{t}+3 u \cdot u_{x}=0, \quad x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
u(x, 0)=\left\{\begin{array}{cc}
0 & \forall x \leq 0 \\
\frac{1}{3} & \forall x>0
\end{array}\right.
\end{gathered}
$$

a) Write down the system of characteristic equations.
b) Are the characteristics straight lines?
c) Draw the characteristics through the points
$\left(x_{k}, 0\right):=(k, 0)$ for $k \in\{-3,-2,-1,0,1,2,3\}$.
Compute the values of the solution along these characteristics.
d) Using parts a)-c), can you obtain the values of $u(x, t)$ in the points $(-1,2),(1,2)$ and $(3,2)$?

Discussion: 25.04.-29.04.2022

