## Differential Equations II for Engineering Students

## Homework sheet 1

## Exercise 1: (Repetition Analysis II)

For the derivation of parameter-dependent integrals for sufficiently smooth $f$ holds the Leibniz-Rule :

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(x, t) d t=\int_{a(x)}^{b(x)} \frac{d}{d x} f(x, t) d t+b^{\prime}(x) f(x, b(x))-a^{\prime}(x) f(x, a(x))
$$

Find the derivative of the function $F(x)$ defined as

$$
F(x):=\int_{-x}^{x^{2}} e^{x t} d t
$$

and compute $\lim _{x \rightarrow 0} F^{\prime}(x)$.

## Exercise 2:

A simple traffic flow model:
We consider a one-dimensional flow of vehicles along an infinitely long, single-lane road. In a so-called macroscopic model, one does not consider individual vehicles, but the total flow of vehicles. For this purpose, we introduce the following quantities:
$u(x, t)=$ (length-)density of the vehicles at the point $x$ at the time $t$
$=$ vehicles/unit length at point $x$ at the time $t$
$v(x, t)=$ speed at the point $x$ at the time $t$,
$q(x, t)=u(x, t) \cdot v(x, t)=$ flow
$=$ amount of vehicles passing the point $x$ at the time $t$ per unit time
a) Assume that there are no entrances or exits, no vehicles are disappearing, and no new vehicles are appearing. Let $N(t, a, \Delta a):=$ number of vehicles on a space interval $[a, a+\Delta a]$ at the time $t$.
Then on the one hand it holds that

$$
N(t, a, \Delta a)=\int_{a}^{a+\Delta a} u(x, t) d x
$$

and on the other hand it also holds

$$
N(t, a, \Delta a)-N\left(t_{0}, a, \Delta a\right)=\int_{t_{0}}^{t} q(a, \tau)-q(a+\Delta a, \tau) d \tau
$$

Derive from this the so-called conservation equation for the mass (number of vehicles)

$$
u_{t}+q_{x}=0 .
$$

Hints on how to proceed:

- Derive both formulas for $N$ with respect to $t$. Please note that for the derivation of parameter-dependent integrals with sufficiently smooth $f$ holds the Leibniz rule:

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(x, t) d t=\int_{a(x)}^{b(x)} \frac{d}{d x} f(x, t) d t+b^{\prime}(x) f(x, b(x))-a^{\prime}(x) f(x, a(x))
$$

- Divide by $\Delta a$.
- Consider the limit $\Delta a \rightarrow 0$.
b) Additionally assume that the velocity depends only on the density: $v=v(u)$. Show that in this case the equation

$$
\frac{\partial u}{\partial t}+\frac{d q}{d u} \cdot \frac{\partial u}{\partial x}=0
$$

describes the conservation of mass.
c) We now assume in a first simple model that the speed increases in inverse proportion to the density and that the density is positive.

$$
v(x, t)=c+\frac{k}{u(x, t)}
$$

What is the continuity equation (=conservation equation for the mass)?
d) Solve the continuity equation derived in part c) for $c=3$ and the initial condition $u(x, 0)=e^{-x^{2}}$.
Show that every sufficiently smooth function $u(x, t)=f(x-c t)$ solves the differential equation. Define $f$ such that the initial condition is satisfied.

Submission: 11.-15.04.22

