Prof. Dr. J. Struckmeier

Dr. H. P. Kiani

Differentialgleichungen II für Studierende der Ingenieurwissenschaften

Blatt 2, Hausaufgaben

Aufgabe 1:

Bestimmen Sie die Lösungen der folgenden Anfangswertaufgaben für $t \in \mathbb{R}^+, x \in \mathbb{R}$.

a)
$$u_t + 3u_x = 0$$
 mit $u(x, 0) = xe^{-x}$.

b)
$$2u_t + x^2 u_x = \frac{1}{u}$$
 mit $u(x,0) = 2\sqrt{e^{-4x^2}}$.

Existiert die Lösung für alle $t \in \mathbb{R}^+$, $x \in \mathbb{R}$?

Wenn nicht, kann die Lösung in den Definitionslücken stetig ergänzt werden?

Aufgabe 2:

Bestimmen Sie eine stetige Lösung u(x,t) der folgenden Anfangsrandwertaufgabe

$$u_t + u_x = x, x, t > 0$$

$$u(x,0) = x (x \ge 0)$$

$$u(0,t) = t (t \ge 0)$$

mit Hilfe der Charakteristikenmethode. Bestimmen Sie dazu jeweils die Lösung zur Anfangsbedingung $u(x,0)=x,\ (\forall x)$ bzw. zur Randbedingung $u(0,t)=t,\ (\forall t)$ und setzen Sie diese Lösungen stetig zusammen. Ist die so gewonnene Lösung für alle $x,t\geq 0$ partiell differenzierbar?

Abgabe bis: 30.04.21