Differentialgleichungen II

Dienstag 10.04.2018

Vorlesung 2

Kai Rothe

Sommersemester 2018

Nach einem Skript von Ingenuin Gasser SoSe2016

Technische Universität Hamburg-Harburg

Methode der Charakteristiken

Man betrachte die quasilineare partielle Differentialgleichung 1. Ordnung mit $\mathbf{x} = (x_1, \dots, x_n)^T$

$$\sum_{i=1}^n a_i(\boldsymbol{x}, u) u_{x_i} = b(\boldsymbol{x}, u), \quad \boldsymbol{x} \in \mathbb{R}^n.$$

Eine Lösung kann durch die **Charakteristikenmethode** berechnet werden, wobei zunächst der **lineare** homogene Fall betrachtet wird.

Definition

Das autonome System gewöhnlicher Differentialgleichungen mit $\boldsymbol{a}=(a_1,\ldots,a_n)^T$

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{a}(\boldsymbol{x}(t))$$

heiß das charakteristische Differentialgleichungssystem einer linearen homogenen partiellen Differentialgleichung

$$\sum_{i=1}^n a_i(\boldsymbol{x}) u_{x_i} = 0, \quad \boldsymbol{x} \in \mathbb{R}^n.$$

Am Beispiel n=2 rechnen wir nach, dass genau die Niveaulinie von u das charakteristische Differentialgleichungssystem erfüllen.

Für die Höhenlinien $(x(t), y(t))^T$ der Lösung u(x, y) der Differentialgleichung erhält man:

$$u(x(t), y(t)) = C \stackrel{d/dt}{\Leftrightarrow} \dot{x}u_x + \dot{y}u_y = 0$$
$$\Leftrightarrow a_1 u_x + a_2 u_y = 0.$$

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$
 heißt **Grundcharakteristik** von u .

$$\begin{pmatrix} x(t) \\ y(t) \\ u(x(t), y(t)) (= C) \end{pmatrix} \text{heißt } \mathbf{Charakteristik} \text{ von } u.$$

Auf den Grundcharakteristiken ist die Lösung u der homogenen linearen Differentialgleichung also konstant.

Beispiel: Geradengleichung bei konstanten a_1 und a_2

$$\begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \Rightarrow \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + t \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Eliminiert man den Parameter t, so erhält man die allgemeine Lösung der homogenen linearen Differentialgleichung:

$$x = a_1 t + c_1 \implies t = \frac{x - c_1}{a_1} \implies y = a_2 \cdot \frac{x - c_1}{a_1} + c_2$$

$$\Rightarrow a_1 y = a_2 x \underbrace{-a_2 c_1 + a_1 c_2}_{=C} \Rightarrow a_1 y - a_2 x = C$$

Damit löst die Funktion

$$g(x,y) := a_1 y - a_2 x$$

die Differentialgleichung, denn sie ist auf den Grundcharkteristiken konstant.

Die allgemeine Lösung u erhät man dann mit einer beliebigen stetig differenzierbaren Funktion φ

$$u(x,y) = \varphi(a_1y - a_2x) \quad (= \varphi(C) = konst).$$

Beispiel: Man berechne die allgemeine Lösung von

$$xu_x + yu_y + (x^2 + y^2)u_z = 0.$$

charakteristisches Differentialgleichungssystem

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} x \\ y \\ x^2 + y^2 \end{pmatrix}$$

allgemeine Lösung des charakteristisches Differentialgleichungssystems

$$\dot{x}(t) = x(t) \implies x(t) = c_1 e^t$$

$$\dot{y}(t) = y(t) \implies y(t) = c_2 e^t$$

$$\dot{z}(t) = x^2(t) + y^2(t) = c_1^2 e^{2t} + c_2^2 e^{2t} \implies$$

$$\begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} c_1 e^t \\ c_2 e^t \\ \frac{1}{2}(c_1^2 + c_2^2)e^{2t} + k \end{pmatrix}$$

Elimination von t

1.
$$x = c_1 e^t \Rightarrow e^t = \frac{x}{c_1} \Rightarrow y = c_2 \frac{x}{c_1} \Rightarrow \frac{y}{x} = \frac{c_2}{c_1} =: c$$

Damit löst $c(x, y, z) = \frac{y}{x}$ die Differentialgleichung.

Probe:

$$xc_x + yc_y + (x^2 + y^2)c_z = -x\frac{y}{x^2} + y\frac{1}{x} + (x^2 + y^2) \cdot 0 = 0.$$

2.
$$z = \frac{1}{2}(c_1^2 + c_2^2)e^{2t} + k = \frac{1}{2}(x^2 + y^2) + k$$

Damit löst $d(x, y, z) := z - \frac{1}{2}(x^2 + y^2) = k$ die Differentialgleichung.

Probe:

$$xd_x + yd_y + (x^2 + y^2)d_z = x \cdot (-x) + y \cdot (-y) + (x^2 + y^2) \cdot 1 = 0.$$

Die allgemeine Lösung u erhät man dann mit einer beliebigen stetig differenzierbaren Funktion φ

$$u(x,y,z) = \varphi\left(\frac{y}{x}, z - \frac{1}{2}(x^2 + y^2)\right) \quad (= \varphi(c,k) = konst).$$

Phasendifferentialgleichungen

Eine Vereinfachung der Elimination des Parameters t der Charakteristiken erhält man durch eine spezielle Form der charakteristischen Differentialgleichungen. Diese ergibt sich, wenn man die Differentialgleichung durch einen Koeffizienten $a_i \neq 0$ teilt.

$$a_1 u_x + a_2 u_y + a_3 u_z = 0$$
 $\stackrel{a_1 \neq 0}{\Leftrightarrow} u_x + \frac{a_2}{a_1} u_y + \frac{a_3}{a_1} u_z = 0$

charakteristische Differentialgleichungen:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{a_2}{a_1} \\ \frac{a_3}{a_1} \end{pmatrix} \quad \Rightarrow \quad x(t) = t + c_0$$

Man erhält also $\frac{d}{dt} = \frac{d}{dx}$ und mit der Parameterverschiebung $c_0 = 0$ sogar x = t.

Es verbleiben die Phasendifferentialgleichungen:

$$\begin{pmatrix} y'(x) \\ z'(x) \end{pmatrix} = \begin{pmatrix} \frac{a_2}{a_1} \\ \frac{a_3}{a_1} \end{pmatrix} .$$

Quasilineare inhomogene Differentialgleichungen

Die Methode der Charakteristiken lässt sich übertragen auf Gleichungen der Form

$$\sum_{i=1}^n a_i(\boldsymbol{x}, u) u_{x_i} = b(\boldsymbol{x}, u), \quad x \in \mathbb{R}^n.$$

Dazu betrachte man das erweiterte lineare homogene Problem

$$\sum_{i=1}^{n} a_i(\boldsymbol{x}, u) U_{x_i} + b(\boldsymbol{x}, u) U_u = 0, \quad x \in \mathbb{R}^n$$

in der unbekannte Funktion $U = U(\boldsymbol{x}, u)$, in den (n+1) unabhängigen Variablen \boldsymbol{x} und u.

Dann gilt:

Ist $U(\boldsymbol{x}, u)$ eine Lösung des erweiterten linearen homogenen Problems mit $U_u \neq 0$, so ist durch

$$U(\boldsymbol{x},u)=0$$

implizit eine Lösung $u = u(\boldsymbol{x})$ des quasilinearen inhomogenen Ausgangsproblem gegeben.

Beweis

Ist $U_u \neq 0$, so lässt sich die Gleichung $U(\boldsymbol{x}, u) = 0$ nach dem Satz über implizite Funktionen nach u auflösen.

Differenziert man $U(\boldsymbol{x}, u) = 0$ nach x_i , so erhält man

$$U_{x_i} + U_u u_{x_i} = 0 \quad \Rightarrow \quad U_{x_i} = -U_u u_{x_i}$$
.

Setzt man U_{x_i} in das erweiterte Problem ein, so erhält man

$$0 = \sum_{i=1}^{n} a_i(\boldsymbol{x}, u) U_{x_i} + b(\boldsymbol{x}, u) U_u$$
$$= \sum_{i=1}^{n} a_i(\boldsymbol{x}, u) (-U_u u_{x_i}) + b(\boldsymbol{x}, u) U_u$$
$$= U_u \left(-\sum_{i=1}^{n} a_i(\boldsymbol{x}, u) u_{x_i} + b(\boldsymbol{x}, u) \right)$$

Da $U_u \neq 0$ gilt, erhält man

$$0 = -\sum_{i=1}^n a_i(\boldsymbol{x}, u) u_{x_i} + b(\boldsymbol{x}, u) \Leftrightarrow \sum_{i=1}^n a_i(\boldsymbol{x}, u) u_{x_i} = b(\boldsymbol{x}, u).$$

Beispiel

Wir lösen das zu Beginn betrachtete Beispiel für n=2 mit konstanten a_1 und a_2

$$a_1 u_x + a_2 u_y = 0$$

über das erweiterte lineare homogene Problem

$$a_1U_x + a_2U_y + 0 \cdot U_u = 0.$$

charakteristische Differentialgleichungen für U

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{u} \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ 0 \end{pmatrix}$$

Die ersten beiden Gleichungen ergeben nach Integration und anschließendem Eliminieren von t wieder

$$C = a_1 y - a_2 x$$

und die dritte Gleichung ergibt u=K. Die allgemeine Lösung lautet dann

$$0 = U(x, y, u) = \Phi(a_1 y - a_2 x, u).$$

Für $U_u \neq 0$ lässt sich diese implizite Gleichung auflösen nach u

$$u(x,y) = \varphi(a_1y - a_2x) .$$

Beispiel

Gesucht ist die allgemeine Lösung der quasilinearen (hier sogar speziell nur inhomogenen) Gleichung

$$(1+x)u_x - (1+y)u_y = y - x$$
.

erweitertes lineares homogenes Problem in U

$$(1+x)U_x - (1+y)U_y + (y-x)U_u = 0.$$

charakteristische Differentialgleichungen für U

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{u} \end{pmatrix} = \begin{pmatrix} 1+x \\ -1-y \\ y-x \end{pmatrix}$$

allgemeine Lösung der charakteristischen Differenialgleichungen

$$\begin{pmatrix} x(t) \\ y(t) \\ u(t) \end{pmatrix} = \begin{pmatrix} c_1 e^t - 1 \\ c_2 e^{-t} - 1 \\ c_3 - c_2 e^{-t} - c_1 e^t \end{pmatrix}$$

Elimination von t aus der ersten und zweiten Gleichung

$$x = c_1 e^t - 1 \implies e^t = \frac{x+1}{c_1},$$

$$y = c_2 e^{-t} - 1 \implies e^{-t} = \frac{y+1}{c_2}$$

$$\implies c := c_1 c_2 = (x+1)(y+1) \quad \text{löst die DGL in } U$$

Elimination von t aus der dritten Gleichung

$$u = c_3 - c_2 e^{-t} - c_1 e^t = c_3 - (y+1) - (x+1)$$

 $\Rightarrow d := c_3 - 2 = u + x + y$ löst die DGL in U

implizite Lösungsdarstellung mit einer stetig differenzierbaren Funktion Φ

$$0 = U(x, y, u) = \Phi((x+1)(y+1), u + x + y).$$

implizite Gleichung auflösen nach u+x+y mit einer stetig differenzierbaren Funktion φ

$$u + x + y = \varphi((x+1)(y+1)) \implies$$
$$u(x,y) = -x - y + \varphi((x+1)(y+1))$$

Charakteristiken im linearen Fall:

Für die Differentialgleichung

$$a_1(x, y)u_x + a_2(x, y)u_y = b(x, y)$$

lauten die charakteristischen Differentialgleichungen des erweiterten Problems in ${\cal U}$

$$\dot{x}(t) = a_1(x(t), y(t)),$$

 $\dot{y}(t) = a_2(x(t), y(t)),$
 $\dot{u}(t) = b(x(t), y(t)).$

Für die Charakteristik $\begin{pmatrix} x(t) \\ y(t) \\ u(t) \end{pmatrix}$

gilt für b(x, y) = 0, also im **homogenen** Fall, u = C.

Im **inhomogenen** Fall, d.h. $b(x,y) \neq 0$, muss u die Differentialgleichung $\dot{u}(t) = b(x(t), y(t))$ erfüllen.

quasilineare Gleichungen:

Für $a_i = a_i(x, y, u)$ und b = b(x, y, u) erhält man zunächst nur eine implizite Lösungsdarstellung

$$\Phi(c_1(x, y, u), c_2(x, y, u)) = 0.$$

Eine Lösung existiert dann gegebenenfalls nur lokal.

Anfangswertprobleme bei Gleichungen 1. Ordnung

In den Anwendungen tritt häufig der Fall einer Zeitvariablen t und n Ortsvariablen auf $\mathbf{x} = (x_1, \dots, x_n)^T$ auf.

Definition:

Das auf ganz \mathbb{R}^n definierte Anfangswertproblem

$$u_t + \sum_{i=1}^n a_i(\boldsymbol{x}, t, u) u_{x_i} = b(\boldsymbol{x}, t, u), \quad (\boldsymbol{x}, t) \in \mathbb{R}^n \times (0, \infty)$$
$$u(\boldsymbol{x}, 0) = u_0(\boldsymbol{x})$$

bezeichnet man als Cauchy-Problem.

Zum **Anfangszeitpunkt** t = 0 ist für u also explizit die Funktion $u_0(\mathbf{x})$ vorgegeben.

Lösungen lassen sich dann über das Charakteristikenverfahren berechnen.

Die Transportgleichung

$$u_t + \boldsymbol{a} \nabla u = u_t + \sum_{i=1}^n a_i u_{x_i} = 0, \quad (\boldsymbol{x}, t) \in \mathbb{R}^n \times (0, \infty)$$
$$u(\boldsymbol{x}, 0) = u_0(\boldsymbol{x})$$

mit $\mathbf{x} = (x_1, \dots, n_n)$ und den Konstanten $a_1, \dots, a_n \in \mathbb{R}$.

Die charakteristischen Differentialgleichungen lauten:

$$t'(\tau) = 1$$
, $x'_1(\tau) = a_1$, ... $x'_n(\tau) = a_n$

mit dem Parameter τ für die Charakteristiken.

Wie bei den Phasendifferentialgleichungen kann $t=\tau$ gesetzt werden und es verbleiben die Differentialgleichungen

$$\dot{x}_1(t) = a_1, \quad \dots \quad , \dot{x}_n(t) = a_n$$

mit den in vektorieller Form geschrieben Lösungen

$$\boldsymbol{x}(t) = \boldsymbol{x}_0 + \boldsymbol{a} \cdot t$$

und der Anfangsbedingung $\boldsymbol{x}(0) = \boldsymbol{x}_0$.

Bei den Charakteristiken handelt es sich also um Geraden durch \boldsymbol{x}_0 und mit Richtung \boldsymbol{a} .

Löst man die Charakteristiken

$$\boldsymbol{x} = \boldsymbol{x}_0 + \boldsymbol{a} \cdot t$$

nach dem konstanten Vektor \boldsymbol{x}_0 auf, so erhält man die allgemeine Lösung der Transportgleichung mit einer beliebigen stetig differenzierbaren Funktion φ

$$u(\boldsymbol{x},t) = \varphi(\boldsymbol{x} - \boldsymbol{a}t) = \varphi(\boldsymbol{x}_0) = konst.$$

Die Anfangsbedingung ergibt

$$u_0(\boldsymbol{x}) = u(\boldsymbol{x}, 0) = \varphi(\boldsymbol{x} - \boldsymbol{a} \cdot 0) = \varphi(\boldsymbol{x})$$

Die Lösung der Anfangswertaufgabe lautet also

$$u(\boldsymbol{x},t) = u_0(\boldsymbol{x} - \boldsymbol{a}t)$$
.

Interpretation der Lösung:

Das gegebene Anfangsprofil $u_0(\boldsymbol{x})$ wird mit der konstanten Geschwindigkeit $\boldsymbol{a} \in \mathbb{R}^n$ weitertransportiert ohne seine Form zu verändern.

Probe

$$u_t(\boldsymbol{x},t) = -\boldsymbol{a}\nabla u_0, \nabla u(\boldsymbol{x},t) = \nabla u_0 \Rightarrow u_t + \boldsymbol{a}\nabla u = 0.$$

Beispiel:

Man betrachte das Cauchy Problem mit nichtkonstanten Koeffizienten

$$u_t + txu_x = 0,$$
 $(x,t) \in \mathbb{R} \times (0,\infty)$
 $u(x,0) = \sin(x).$

Phasendifferentialgleichung $\dot{x} = tx$ mit $x(0) = x_0$

$$\Rightarrow \frac{\dot{x}}{x} = t \Rightarrow \ln|x| = \frac{t^2}{2} + k \Rightarrow x(t) = x_0 e^{t^2/2} \Rightarrow x_0 = x e^{-t^2/2}$$

allgemeine Lösung

$$u(x,t) = \varphi(xe^{-t^2/2})$$

Anfangsbedingung

$$\sin x = u(x,0) = \varphi(xe^0) = \varphi(x)$$

Lösung der Anfangswertaufgabe

$$u(x,t) = \sin(xe^{-t^2/2})$$