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@ Motivation



Exhaust gas pollution

Motivation

Figure: exhaust gas emission® and air pollution in China?

1
http://www.thedailygreen.com/cm/thedailygreen/images/o06/car-exhaust-1g. jpg

2
http://climatechange.foreignpolicyblogs.com/files/2010/09/china-air-pollution.jpg


http://www.thedailygreen.com/cm/thedailygreen/images/o6/car-exhaust-lg.jpg
http://climatechange.foreignpolicyblogs.com/files/2010/09/china-air-pollution.jpg

Catalytic converter

@ Catalytic converters
reduces needed
activation energy for
the transformation of
harmful gases into less
harmful gases

Motivation

@ Honeycomb structure
provides a large
reaction surface

@ Reaction only happens
when activation
energy ET =~ 600K is
reached ("light off")

Figure: catalytic converter?

3
http://wuw.timbarkerstudio.com/technical/catalytic_converter. jpg


http://www.timbarkerstudio.com/technical/catalytic_converter.jpg

Catalytic converter Il

How to ensure sufficient high temperatures in the
catalytic converter just after the engine start?
Lotbeticn @ Choose A-ratio less than 1.
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@ Unburnt gas is transported to the catalytic converter,
where it reacts exothermically

@ Required oxygen is given by a pump
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Modeling

© Modeling



Modeling

@ Gas flow through a pipe with a variable duct

o physical effects have to be included, such as

wall friction

o heat transfer through the wall

@ combustion in the catalytic converters

@ friction in the catalytic converters due to honeycomb
structure

©

Modeling
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Figure: Geometry of the exhaust pipe



First model

First model

with E = ¢, T + %2 K(T) := Ko - exp(—E*/T) (Arrhenius’ law) and
X(x) =1 < x is in one of the two catalytic converters, and vanishes
otherwise.

[ R. Natalini and L. Lacoste for MAGNETTI MARELLI
Mathematical modeling of chemical processes in exhaust pipe
Technical Report, IAC Rome, 2004.



New model

Model for a network of single pipes.

Network _—
approach _

Figure: Network of 9 connected pipes

Use model (1) with constant cross section to derive a model for
the single pipes.



New model Il

Model for a single pipe with diameter d containing a catalytic
converter.

Network
approach



New model Il

Model for a single pipe with diameter d containing a catalytic
converter.

Network
approach

Simplify this model:
© Scale
© Small Mach number — asymptotic model



Scaling

Replace each quantity (J) by the product of the reference
quantity (y,) and the dimensionless quantity (y).

Network

approach Quantity Unit Reference quantity Reference value
t s t- = x./uy 0.01 — 0.093s
X m x =1L 0.1 -0.93m
1] kg m—3 Pr 12 kgm=3
i m st u, 10 ms™!
P kg m~!s72 pr 10%kg m~1 s72
T K T, = Pr/(Rpr) 300 K
z z 0.1

Table: Quantities, Units, Reference quantities, Reference values



Full Euler model (FE)

Dimensionless model, full Euler model (FE)

pe+ (pu)x =0
S (pu)e + (pu?)x + ! - _C v u
pu)t pu” )x M2 Px = fp2 cP
2 U2 5 u3
(PT + (0= 1Mo )e+ (puT + (7~ 17 M)

+('Y — 1)(up)x = —h(T — TWalI) + quZK( T)
(p2)t + (puz)x = —pzK(T)
p=pT

(FE)

M = u, ﬂ/%&lﬁ?( M)zlwxnflym2x48¢o4

2



Asymptotic model (AM)

Asymptotic expansion in € = yM? in the quantities, i.e.

p(x, t) = po(x) + epr(x, t) + O(¢?)

leads to an asymptotic model.

Network
approach



Asymptotic model (AM)

Asymptotic expansion in € = yM? in the quantities, i.e.

p(x, t) = po(x) + epr(x, t) + O(¢?)

leads to an asymptotic model.

Network
approach

pe+(v+ Qpx=—qp
zt 4+ (v+ Q)z, = — zK(T)

1 1
1
Ve = pI— pr— /thdX - /p(V+ Q)qdx
| pdx 0 0
0

- C,c/lde—Cc/lp(v—i—Q) dx]

0 0




© Network



The exhaust pipe as a network

@ Each pipe (i =1,...,9) needs 4 boundary conditions
(data we do not have).

Network

@ Connect 9 pipes to a network by defining coupling
conditions at the vertices

Figure: Network of 9 connected pipes and 8 vertices



Coupling conditions

@ Conservation of mass

pit=pl Vi=2...,9 (3)
Soupine @ Conservation of the ratio of unburnt gas
27l =z vVi=2...,9 (4)

© Conservation of internal energy (temperature)

u;'—lA"lzqui Vi=2,...,9 (5)



Coupling conditions for the pressure

@ First idea: Conservation of pressure at the vertices

Py
@

pr=py =p/* (6)

Coupling
conditions



Coupling conditions for the pressure

@ First idea: Conservation-of pressure—at-the vertices

Py
@

P_ooi il i
pr = pV - p/ + fext (6)

o © Include pressure loss term (minor losses) at the vertices.
oupling
conditions

()2 2\ 2

. p’,% (1 — ddz—") sudden expension
fl = i+1

ext . i+1y2 d- i
0.5- p}“% (1 - d_+21) sudden contraction

sudden expansion sudden contraction
vertex i vertex i
_Je ] ]
d; I _ dit1 dj T Id“rl

pipe i+ 1 pipe i



Overview

Coupling
conditions




Overview

pt+ (v+ Q)px = —ap
zt + (v + Q)zx = —zK(T)

v =

*Cf

1 1
1 P = Pr */
[ pdx 0
0

1 v 2
/ﬂ( :Q)

pQedx — [ p(v+ Q)qdx

!

1
dx — Cc | p(v+ Q) dx
fre-o]




Overview

Initial (engine start) and boundary conditions

3 bc's 1 bc
[ no—J L

Coupling
contitions T jJ

pt+ (v+ Q)px = —ap
zt + (v + Q)zx = —zK(T)

1 1

1

v e = [ pQuax— [ o(v+ Qad
[ pdx 0 0

0

/ p(v + Q)?
a CF/ 2

1
dx — Cc | p(v+ Q) dx
fre-o]




Overview

Initial (engine start) and boundary conditions

4 coupling conditions (3) - (6)

Coupling
contitions T jJ

pt+ (v+ Q)px = —ap
zt + (v + Q)zx = —zK(T)

1 1

1

v e = [ pQuax— [ o(v+ Qad
[ pdx 0 0

0

/ p(v + Q)?
g e

1
dx — Cc [ p(v+ Q) dx
fresa]




Numerical
simulation

@ Numerical simulation



Numerical costs

CFL-condition for (FE) | CFL-condition for (AM)
At ‘

Amax——— < €N Umax—— < Cn

with Apax 1= max || With Upmax 1= max |u|

cy denotes the Courant number. u > 0 = Apax = Umax + C,
where ¢ denotes speed of sound. Then

Numerical
simulation

A 1

Atap = maXAtFE = (1 + —> Atrg (7)
Umax M

Furthermore the computation of one spatial steps for the full

Euler model takes approximatly 5 times as many flops as for

the asymptotic model.



Some numerical simulations

We will compare the full Euler model (FE) with the
asymptotic model (AM).

@ Single pipe
@ high pressure difference
@ low pressure difference

Numerical
simulation

@ Whole exhaust pipe

@ high pressure difference
@ low pressure difference

@ Sensibility numerical solutions to the minor loss term



Single pipe: Example 1

(FE) (AM)

density velocity &
20
% 12 = 15
] @
g ! L ORI
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* - et S~
™06 - x S~ ~
N = 5 i
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Numerica % Im K
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Figure: Example 1: Numerical results after t* = 0.4s



Single pipe: Example 2

(FE) (AM)

density velocity &
20
% 12 = 15
@
5 1/ £
— 0811 1 — 10 1 1
% &
™06 x
2 04 5 5
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Figure: Example 2: Numerical results after * = 3s



Single pipe: Output data

| || Example 1 || Example 2 |
[ Il FE T AM ] FE T AM ]
spatial supporting points 100 100 100 100
time steps 25947 617 176644 488
last time step size 1.5324e-05 0.00062999 1.6902e-05 0.0062657
computation time (in sec) 113.5494 0.29539 772.1798 0.24294
computation time (in min) 1.8925 0.0049232 12.8697 0.004049
largest speed (A max, Umax ) 587.3086 4.2859 532.4936 1.4364
Mach number M 0.01828 0.02459 0.0022544 0.0024725
Numerical ratio FE/AM time steps 42.0535 361.9754
simulation ratio AM/FE time steps size 41.1111 370.7164
ratio N max/ Bimax 711111 370.7164
ratio FE/AM computation time 384.4039 3178.4926

Table: Output data for example 1 and example 2. The computation
time refers to a personal computer (Intel(R) Core(TM) i5 CPU 750 @
2.67GHz) with 8 GB of memory



Whole exhaust pipe: Example 3

(AM) CcN = 0.1 (AM) cN = 1

(FE) ¢y = 0.1

density j velocity &

") ke/m?]

%, t

Numerical
simulation
0.2 1000
800
600
400
200
1 2 3
% [m]

Figure: Example 3: Numerical results after t* = 2s



Whole exhaust pipe: Example 4

(AM) CcN = 0.1 (AM) cN = 1

density j velocity &

") lke/m’]

i
X

i

Numerical

% [m] -
Simalation ratio of unLurnt gas z temperature T

0.2 1000

0.15 < 800

% [m] % [m]

Figure: Example 4: Numerical results after t* = 3s



Numerical
simulation

Whole exhaust pipe: Output data

(AM) CN =0.1 (AM) cN = 1
[ Il Example 3 Il Example 4 |
[ Il FE ] AM Il FE T AM |
spatial supp. points 200 200 (200) 200 200 (200)
time steps 392628 34052 (3469) 570800 6849 (725)
last time step size 4.98e-06 5.40e-05 (5.40e-04) 5.25e-06 3.91e-04 (3.91e-03)
comp. time (in sec) 5935.86 43.97 (4.75) 8587.31 9.96 (1.26)
comp. time (in min) 98.93 0.73 (0.08) 143.12 0.17 (0.02)
max speed (A maxs fmax) 362.02 33.32 (33.28) 343.04 761 (4.61)
Mach number M 0.042 0.056 (0.056) 0.009 0.009 (0.009)
ratio FE/AM time steps 11.53 (113.18) 83.34 (787.31)
ratio AM/FE At 1083 (108.37) 7434 (743.24)
Tatio Nmax/ imax 10.86 (10.88) 7451 (7453)
ratio FE/AM comp. time 134.98 (1238.80) 861.58 (6736.72)

Table: Output data for example 3 and example 4. The computation
time refers to a personal computer (Intel(R) Core(TM) i5 CPU 750 @
2.67GHz) with 8 GB of memory



Minor loss term: Example 5

0=m/3 no pressure loss

Numerical
simulation



Numerical
simulation

Minor loss term: Example 5

*) [kg/m?]

e
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no pressure loss

velocity i1 = 7 + Q
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Figure: Example 5: Numerical results after t* = 2s



Numerical
simulation
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Optimization Problem

@ Aim: "Heat up CC without using too much fuel “.

Optimization



Optimization Problem

@ Aim: "Heat up CC without using too much fuel “.

@ Equation for temperature in catalytic converter
required:

(Tc)t — hc(Tgas - Té) (8)

where Tg,s is the mean gas temperature in the cc.

Optimization



Optimization Problem

@ Aim: "Heat up CC without using too much fuel “.

@ Equation for temperature in catalytic converter
required:

(TC)t = hC(Tgas - Té)

where Tg,s is the mean gas temperature in the cc.
@ Cost functional

tend tend

T=3% /(Tg(t) ~ Top Pt + 2 / 2(t)dt

ieCy 5

Optimization

(8)

9)



Optimization Problem

@ Aim: "Heat up CC without using too much fuel “.

@ Equation for temperature in catalytic converter
required:

(Tc)t — hc(Tgas - Té) (8)

where Tg,s is the mean gas temperature in the cc.
@ Cost functional

Optimization tend tend
1 ,. o
758 [T = Towpet 5 [ atepae (o)
1 0 0

@ Task: Minimize Cost functional subject to the constraints.



Optimization Problem

@ Aim: "Heat up CC without using too much fuel “.

@ Equation for temperature in catalytic converter
required:

(Tc)t — hc(Tgas - Té) (8)

where Tg,s is the mean gas temperature in the cc.
@ Cost functional

Optimization tend tend
1 ,. o
758 [T = Towpet 5 [ atepae (o)
1 0 0

@ Task: Minimize Cost functional subject to the constraints.

@ Strategy: First variations of Lagrange functional lead to
an optimality system (KKT-condition)



Lagrangian functional

1 tend - tend
L=-% /(Té(t) — Tope)Pdt+ 2 / (1)t
2 ieC 2
0 0
np lend L S np tend L'
-3 / /g'l(p; F Q@)L+ g Pyt — 3 / /g;(z; L+ Q)2+ 2 K(T))dxdt
=19 0 =19 0
t i
np ‘end L i 2
. . 1 . . P P PR p (v +Q)
->° / & |ve— —— Pi/—P/1,—/P/Q£+P/(V/+Q/)‘7’+Cf7dx
i1 RI(0) 2
= 0 0
o L tend
Rt o o ) )
prmization —Ce /p’(v’ +Q)dx| [dt =3 / & (T — he(Tgeg — TE))elt
3 iec
tend tend p L
. o .
- [ me o0 - ped = [ @00 - =3 [16ix0) - sx)ex
0 0 =19

np L o . npo . np ) )
=3 [ vhE(x,0) = )k = S v vi) = S v(TO) — Ty

=17} i=1 i=1



Optimality system

@ constraints or state equations

ph+ (v + Qe = —d'p
zi + (vi + Qi)z)i( = —ziK(Ti)

o (10)
vp = @' /R'(0)
(THe = he(The = TD)
@ adjoint or co-state equations

(€Dt + (v + Q)EDx =

Optimization i i iy
&)+ +Q )(Ez.)x =... (1)

(&3)e =

(&) =

@ optimality condition

ozj+m2 =0 (12)



Numerical approach

Algorithm

(0

Guess a initial control z, ). For k = 0,1,2,... repeat the
following steps until satisfactory convergence is achieved:

@ solve the constraints with control z,(k) to obtain the
corresponding state variables p(K) = p(z/(k)), z(k) =
2z, v = v(z(9), T = T(21);

@ solve the adjoint system with state variables
p(k), z(K) (k) Tc(k) to obtain the adjoint variables

k k k k k
é.:(L )7££ )7£:£, )’ z(1 )’Ug );

Optimization

Q use ngk) to compute gradient j' (z,(k));
© compute step length « via line search (ARMI1JO or
WOLFE-POWELL method);

@ set z,(k+1) = z,(k) — aj’(z,(k)).




2 numerical examples

—
Setting: [ooam 0.06m Topt = 600K

L
! tend = 60s

1L

Examples:

© low costs for boundary control variable, low starting
value.

c=01 z(t) = 0.01 Vt € [0, tend]

Optimization

@ high costs for boundary control variable, high starting
value.

o=1 Z9(t) =0.1 Vt € [0, tend]



Numerical simulations: Example 1

T =0T+ Tp2 | To = & flend oy(0)%dt | Ty2 = 3 Jgr(T2(0) = Topt)ot

| iteration
0 118.873 3.000 118.574
1 69.106 31.863 65.920
2 47.542 73.588 40.183
9 35.306 171.433 18.162
bc for 2 temperature in cc '7}
0.25 600 —
Optimization 0.2 550 / R
500
_ 015 X 450
= 0.1 :g 400/
0.05
300
0 250
0 10 20 30 40 50 60 0 10 20 30 40 50 60

i[s

i [s]




Numerical simulations: Example 2

T =0T+ Ty | Te= 3 e | Tpp = 3T — Tom)et

| iteration

0 328.412 300.000 28.412
1 111.408 65.232 46.177
2 98.437 29.959 68.478
3 98.303 27.405 70.898
bc for 2 temperature in cc '7}
700
e 01 650
Optimization ggg 600
007 - %0
o 0.06 k_/ = 500 ]
N 0.05 &
0.04 \K = :Zg
0.03 S SS—
0.02 oy 0
0.01 300
0 250
0 10 20 30 40 50 60 0 10 20 30 40 50 60

il t[s
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Conclusion

© Conclusion

@ Inclusion of pressure loss terms possible with network
approach

o very good qualitative consistence of the asymptotic model
with the full Euler model.

@ Much faster numerical simulations.

o Optimization or control (e.g. of temperature) with respect
to boundary conditions possible.

Conclusion



Conclusion

© Conclusion

@ Inclusion of pressure loss terms possible with network
approach

o very good qualitative consistence of the asymptotic model
with the full Euler model.

@ Much faster numerical simulations.

o Optimization or control (e.g. of temperature) with respect
to boundary conditions possible.

@ Open Questions

@ existence of a solution to the constraints
@ convergence of the optimization algorithm

Conclusion



Android App

Real-time simulations on a Smartphone, available for download
on website of Martin Rybicki:

http://www.math.uni-hamburg.de/home/rybicki/apps

= 7 g = E ol @ 12:49
single pipe flow. single pipe flow.

time [s] = D

temperature

Conclusion



http://www.math.uni-hamburg.de/home/rybicki/apps

Thank you!



