Differential Equations I for Students of Engineering Sciences

Homework 5

Problem 1:

(a) Let $I \subset \mathbb{R}$ be an open interval and let $u_1, u_2, u_3 : I \to \mathbb{R}$ be twice continuously differentiable functions. The Wronski determinant is defined al

WD(t) := det
$$\begin{pmatrix} u_1(t) & u_2(t) & u_3(t) \\ u'_1(t) & u'_2(t) & u'_3(t) \\ u''_1(t) & u''_2(t) & u''_3(t) \end{pmatrix}$$
.

Proof the following: If u_1, u_2, u_3 are linearly dependent, we have WD(t) = 0 for all $t \in I$. If, on the other hand, $WD(t_0) \neq 0$ for some $t_0 \in I$, then u_1, u_2, u_3 are linearly independent.

Hint: Recall that the functions u_1 , u_2 , u_3 are linearly dependent, if there exists $(c_1, c_2, c_3)^\top \neq (0, 0, 0)^\top$, such that $c_1 u_1(t) + c_2 u_2(t) + c_3 u_3(t) = 0$ for all $t \in I$.

(b) Show that the functions

$$u_1(t) = 1,$$
 $u_2(t) = e^{-t} \cos(t),$ $u_3(t) = e^{-t} \sin(t)$

are linearly independent on $I = \mathbb{R}$.

(c) Find an equations of the form

$$a_3u''' + a_2u'' + a_1u' + a_0u = 0$$

with $a_0, \ldots, a_3 \in \mathbb{R}$, such that $M = \{1, e^{-t} \cos(t), e^{-t} \sin(t)\}$ is a fundamental system for that equation.

Problem 2: Find the eigenvalues of the following matrix. Determine the corresponding eigenvectors, and, if necessary, the generalized eigenvectors.

$$A = \begin{pmatrix} 1 & -3 & 3\\ 0 & -5 & 6\\ 0 & -3 & 4 \end{pmatrix}$$

Submit by: 20. January 2025