Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hausaufgaben 5

Aufgabe 1:

(a) Sei $I \subset \mathbb{R}$ ein offenes Intervall und seien $u_1, u_2, u_3 : I \to \mathbb{R}$ zweimal stetig differenzierbare Funktionen. Die Wronski-Determinante ist definiert als

$$WD(t) := \det \begin{pmatrix} u_1(t) & u_2(t) & u_3(t) \\ u'_1(t) & u'_2(t) & u'_3(t) \\ u''_1(t) & u''_2(t) & u''_3(t) \end{pmatrix}.$$

Zeigen Sie: Sind u_1, u_2, u_3 linear abhängig, so gilt WD(t) = 0 für alle $t \in I$. Gilt umgekehrt $WD(t_0) \neq 0$ für ein $t_0 \in I$, so sind die u_1, u_2, u_3 linear unabhängig.

Hinweis: Wir erinnern daran, dass die Funktionen u_1 , u_2 , u_3 linear abhängig sind, wenn es $(c_1, c_2, c_3)^{\top} \neq (0, 0, 0)^{\top}$ gibt, sodass $c_1 u_1(t) + c_2 u_2(t) + c_3 u_3(t) = 0$ für alle $t \in I$ gilt.

(b) Zeigen Sie, dass die Funktionen

$$u_1(t) = 1,$$
 $u_2(t) = e^{-t}\cos(t),$ $u_3(t) = e^{-t}\sin(t)$

auf $I = \mathbb{R}$ linear unabhängig sind.

(c) Finden Sie eine Gleichung der Form

$$a_3u''' + a_2u'' + a_1u' + a_0u = 0$$

mit $a_0, \ldots, a_3 \in \mathbb{R}$, für die $M = \{1, e^{-t} \cos(t), e^{-t} \sin(t)\}$ ein Fundamentalsystem ist.

Aufgabe 2: Bestimmen Sie für die folgende Matrix die Eigenwerte, sowie die zugehörigen Eigenvektoren und ggf. Hauptvektoren:

$$A = \begin{pmatrix} 1 & -3 & 3 \\ 0 & -5 & 6 \\ 0 & -3 & 4 \end{pmatrix}$$