Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Präsenzblatt 2 - Lösungen

Aufgabe 1: Bestimmen Sie die Lösung des folgenden Anfangswertproblems:

$$y'(x) - 2y(x) = 1 + 4e^{-2x}, y(0) = 1.$$

Lösung: In Standardform lautet die Differentialgleichung

$$y'(x) = 2y(x) + 1 + 4e^{-2x}$$

d.h. wir haben eine lineare, inhomogene Gleichung erster Ordnung mit

$$a(x) = 2,$$
 $b(x) = 1 + 4e^{-2x}.$

Wir wählen A(x) = 2x als Stammfunktion von a und erhalten aus der Lösungsformel:

$$y(x) = e^{A(x)} \left[\int_{x_0}^x e^{-A(s)} b(s) \, ds + y_0 e^{-A(x_0)} \right] = e^{2x} \left[\int_0^x e^{-2s} \left(1 + 4e^{-2s} \right) \, ds + 1 \right]$$

$$= e^{2x} \int_0^x e^{-2s} \, ds + 4e^{2x} \int_0^x e^{-4s} \, ds + e^{2x}$$

$$= e^{2x} \cdot \left(-\frac{1}{2}e^{-2s} \right) \Big|_0^x + 4e^{2x} \cdot \left(-\frac{1}{4}e^{-4s} \right) \Big|_0^x + e^{2x}$$

$$= -\frac{1}{2}e^{2x} \left(e^{-2x} - 1 \right) - e^{2x} \left(e^{-4x} - 1 \right) + e^{2x} = -\frac{1}{2} + \frac{1}{2}e^{2x} - e^{-2x} + e^{2x} + e^{2x}$$

$$= -e^{-2x} + \frac{5}{2}e^{2x} - \frac{1}{2}.$$

Aufgabe 2: Lösen Sie die folgenden Differentialgleichungen durch Trennung der Variablen:

(a)
$$y' = x^2 y$$
, (b) $y' = xy^2$, (c) $y' = (1 - \sin(x))y$, (d) $y' = \frac{x \cos^2(y)}{1 + x^2}$.

Lösung:

(a) Eine Lösung ist y = 0. Für $y \neq 0$:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 y \quad \Rightarrow \quad \int \frac{1}{y} \, \mathrm{d}y = \int x^2 \mathrm{d}x \quad \Rightarrow \quad \ln(|y|) = \frac{1}{3}x^3 + \tilde{c}, \qquad \tilde{c} \in \mathbb{R},$$
$$\Rightarrow \quad |y| = e^{\tilde{c}} \cdot e^{x^3/3} \quad \Rightarrow \quad y(x) = ce^{x^3/3}, \qquad c \in \mathbb{R}.$$

(b) Eine Lösung ist y = 0. Für $y \neq 0$:

$$\frac{dy}{dx} = xy^2 \quad \Rightarrow \quad \int \frac{1}{y^2} \, dy = \int x \, dx \quad \Rightarrow \quad -\frac{1}{y} = \frac{1}{2}x^2 + c$$

$$\Rightarrow \quad y(x) = \frac{1}{c - \frac{x^2}{2}}, \qquad c \in \mathbb{R}.$$

(c) Eine Lösung ist y = 0. Für $y \neq 0$:

$$\frac{dy}{dx} = (1 - \sin(x))y \quad \Rightarrow \quad \int \frac{1}{y} dy = \int (1 - \sin(x)) dx$$

$$\Rightarrow \quad \ln(|y|) = x + \cos(x) + \tilde{c}, \quad \tilde{c} \in \mathbb{R}$$

$$\Rightarrow \quad |y| = e^{\tilde{c}} \cdot e^{x + \cos(x)} \quad \Rightarrow \quad y(x) = ce^{x + \cos(x)}, \quad c \in \mathbb{R}$$

(d) Für $k \in \mathbb{Z}$ und die konstante Funktion $y = \frac{\pi}{2} + k\pi$ ist $\cos^2(y) = 0$ und y' = 0, d.h. diese y lösen die Differentialgleichung. Ansonsten gilt:

$$\frac{dy}{dx} = \frac{x \cos^2(y)}{1 + x^2} \quad \Rightarrow \quad \int \frac{1}{\cos^2(y)} dy = \int \frac{x}{1 + x^2} dx$$

$$\Rightarrow \quad \tan(y) = \frac{1}{2} \ln(1 + x^2) + c$$

$$\Rightarrow \quad y(x) = \arctan\left(\frac{1}{2} \ln(1 + x^2) + c\right), \qquad c \in \mathbb{R}.$$

Damit ist $y(x) \in (-\pi/2, \pi/2)$ für alle $x \in \mathbb{R}$ und somit $\cos^2(y) \neq 0$.

Die Funktion $\cos^2(y)$ ist π -periodisch, d.h. $\cos^2(y+k\pi)=\cos^2(y)$ für alle $k\in\mathbb{Z}$. Weiterhin gilt $\frac{\mathrm{d}}{\mathrm{d}x}(y(x)+k\pi)=\frac{\mathrm{d}y(x)}{\mathrm{d}x}$, d.h. zu jeder Lösung y ist auch $y+k\pi$ mit $k\in\mathbb{Z}$ eine Lösung.

Aufgabe 3: Lösen Sie das Anfangswertproblem für folgende *Bernoullische* Differential-gleichung:

$$u' = \frac{1}{3}u + \frac{1}{3}u^4$$
 für $t > 0$, $u(0) = 1$.

Ist die Lösung für alle t > 0 definiert?

Lösung: Wir haben eine Bernoullische Gleichung mit $a=b=\frac{1}{3}$ und $\alpha=4$. Die Substitution $y(t):=u^{1-\alpha}(t)=u^{-3}(t)$ liefert dann

$$y(t)' = (1 - \alpha) \left[a(t)y(t) + b(t) \right] = -3 \left[\frac{1}{3}y(t) + \frac{1}{3} \right] = -y(t) - 1,$$

sowie $y(0) = u^{-3}(0) = 1$.

Mit der Lösungsformel für lineare Probleme erster Ordnung können wir dann berechnen:

$$y(t) = e^{-t} \left[\int_0^t e^s \cdot (-1) ds + 1 \right] = e^{-t} \left[-(e^t - 1) + 1 \right] = 2e^{-t} - 1.$$

Jetzt müssen wir diese Lösung wieder zurück transformieren:

$$y = u^{-3} \qquad \Leftrightarrow \qquad u = y^{-1/3} = \frac{1}{\sqrt[3]{y}},$$

also

$$u(t) = \frac{1}{\sqrt[3]{2e^{-t} - 1}}.$$

Die Lösung ist nur für $2e^{-t} - 1 \neq 0$ definiert, d.h. für $t < \ln(2)$.