Fachbereich Mathematik der Universität Hamburg Prof. Dr. T. Schmidt, Dr. C. Goetz

Differential Equations I for Students of Engineering Sciences

Exercise class 1

Exercise 1:

(a) We consider the differential equation

$$u'(t) = u(t) - t$$
 for $t \in \mathbb{R}$.

Which of the following functions defined on \mathbb{R} are solutions of such differential equation ?

(1) $u_1(t) := e^t$, (2) $u_2(t) := t + 1$, (3) $u_3(t) := \alpha e^t + t + 1$, (4) $u_4(t) := e^t + \beta(t+1)$,

where $\alpha, \beta \in \mathbb{R}$ are arbitrary constants.

(b) Given the differential equation

$$y''(t) + 16y(t) = 0 \qquad \text{for } t \in \mathbb{R},$$

show that the functions

 $y_1(t) := \cos(4t), \qquad y_2(t) := \sin(4t), \qquad y_3(t) := \alpha \cos(4t) + \beta \sin(4t)$

defined on \mathbb{R} for arbitrary $\alpha, \beta \in \mathbb{R}$, are solutions.

Does the initial value problem y'' + 16y = 0, y(0) = 0 have a unique solution?

Exercise 2: We denote the humidity of a cloth in a drying machine at time $t \ge 0$ with m(t), and let $m_0 := m(0) > 0$. It holds:

- During drying, the decrease in humidity is proportional to the humidity.
- After 15 minutes the cloth has still 50 % of its original humidity m_0 .

Set an appropriate differential equation describing this process and determine its solution. How long does it take until the cloth has just the 2% of its original humidity?

Exercise 3: We consider the function $f:[0,\infty) \longrightarrow \mathbb{R}$, defined by

$$f(u) := (1-u)u$$

(a) Show that the function φ_c defined by

$$\varphi_c(t) := \frac{e^t}{e^t + c},$$

with $c \in \mathbb{R}$ is a solution of the differential equation $\varphi'_c = f(\varphi_c)$ for $t \ge 0$, provided $e^t + c > 0$.

- (b) Assume now that an initial value $u(0) = u_0 > 0$ is given. How should c from Part (a) be chosen, such that $u(t) = \varphi_c(t)$ solves the initial value problem u' = f(u), $u(0) = u_0$? What are the solutions for $u_0 = 0$ and for $u_0 = 1$?
- (c) Are the solutions in (b) with $u_0 > 0$ defined for every t > 0? Meaning, is the condition $e^t + c > 0$ satisfied for all t > 0?
- (d) Determine the solutions of the initial value problem u' = f(u), $u(0) = u_0$ for $u_0 = \frac{1}{2}$ and for $u_0 = \frac{3}{2}$. Sketch these solutions. How do the solutions behave for $t \to \infty$?