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Linear homogeneous ODEs
Consider a linear, homogeneous differential equation of order m ∈ N

Am(t)u(m)(t) + ⋅ ⋅ ⋅ +A2(t)u′′(t) +A1(t)u′(t) +A0(t)u(t) = 0 (1)

with coefficients Ak ∈ C(I ).

There are exactly m linearly independent solutions of (1)

If u1,u2, . . . ,um are m linearly independent solutions of (1), then they
build a basis of the space of solutions of (1) and M ..= {u1, . . . ,um}
defines a fundamental system of the ODE (1)

The general solution of the (homogeneous) ODE (1) is given by

uh(t) ..= c1u1(t) + c2u2(t) + ⋅ ⋅ ⋅ + cmum(t), with ck ∈ R.

Question: how to determine u1, . . . ,um?
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Linear hom. ODEs with constant coefficients

In case the coefficients in (1) are constants, we get:

amu
(m)(t) + am−1u(m−1)(t) + ⋅ ⋅ ⋅ + a2u

′′(t) + a1u
′(t) + a0u(t) = 0 (2)

for ak ∈ R.

We define the characteristic polynomial of (2) as

P(λ) ∶= amλm + am−1λm−1 + ⋅ ⋅ ⋅ + a2λ
2 + a1λ + a0

If λ is a root (zero) of P , then the function eλt solves (2)
If λ is a root of P with (algebraic) multiplicity d ∈ N, then

eλt , t ⋅ eλt , . . . , td−1
⋅ eλt

are d linearly independent solutions of (2)
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Example 1

Write a fundamental system and the general solution of the ODE

u(4) (t) − 5u′′′ (t) + 6u′′ (t) + 4u′ (t) − 8u (t) = 0.
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Example 1

Write a fundamental system and the general solution of the ODE

u(4) (t) − 5u′′′ (t) + 6u′′ (t) + 4u′ (t) − 8u (t) = 0.

Characteristic polynomial: P(λ) = λ4 − 5λ3 + 6λ2 + 4λ− 8 = (λ+ 1)(λ− 2)3.

Roots of P are:
λ1 = −1, with multiplicity d1 = 1 Ô⇒ e−t is a solution
λ2 = 2, with multiplicity d2 = 3 Ô⇒ e2t , te2t , t2e2t are other linearly
independent solutions

Hence, a fundamental system is given by M = {e−t , e2t , te2t , t2e2t}
and the general solution is

uh(t) = c1e−t + c2e2t + c3te2t + c4t2e2t , ck ∈ R.
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Complex and real fundamental systems
Recall: any polynomial of degree m ∈ N with real (or complex)
coefficients has exactly m roots in C (counted with their multiplicity).
If λ ∈ C ∖R is a root of the characteristic polynomial P associated to
(2) with real coefficients, then its complex conjugate λ is still root of
P , since

P (λ) =
m

∑
k=0

akλ
k =

m

∑
k=0

akλk = P(λ) =
λ root

0.

Meaning: complex solutions always appear in pairs of conjugates!

Example 2

The ODE u′′ − 2u′ + 5u = 0 has characteristic polynomial
P (λ) = λ2 − 2λ + 5. Solve: P(λ) = 0 ⇐⇒ λ2 − 2λ + 5 ⇐⇒ λ = 1 ± 2i .

Then a (complex) fundamental system is given by {e(1+2i)t , e(1−2i)t} and
the general solution is: uh(t) = c1e(1+2i)t + c2e(1−2i)t = c1ete2it + c2ete−2it .
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Complex and real fundamental systems

Euler formula: for θ ∈ R, it is e±iθ = cos(θ) ± i sin(θ).

If λ = a + ib ∈ C (a,b ∈ R, b ≠ 0), eλt = e(a+ib)t = eat cos(bt) + ieat sin(bt).
Let λ = a − ib be its complex conjugate.

R(eλt) = eat cos(bt) = eλt + eλt
2

↝ real part of eλt

I(eλt) = eat sin(bt) = eλt − eλt
2i

↝ imaginary part of eλt
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If λ = a + ib ∈ C (a,b ∈ R, b ≠ 0), eλt = e(a+ib)t = eat cos(bt) + ieat sin(bt).
Let λ = a − ib be its complex conjugate.

R(eλt) = eat cos(bt) = eλt + eλt
2

↝ real part of eλt

I(eλt) = eat sin(bt) = eλt − eλt
2i

↝ imaginary part of eλt

If λ is root of the characteristic polynomial P of (2) (hence even λ)
Ô⇒ eλt , eλt are two complex, linearly independent solutions of (2)
Ô⇒ R(eλt),I(eλt) are two real, linearly independent solutions of (2).
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Example 3
Determine a real fundamental system and the (real) general solution of

u′′(t) − 2u′(t) + 5u(t) = 0.
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Example 3
Determine a real fundamental system and the (real) general solution of

u′′(t) − 2u′(t) + 5u(t) = 0.

From Example 2 we know that e(1+2i)t and e(1−2i)t are 2 lin. in-
dep. complex solutions, which generate the complex fundamental system
MC ..= {ete2it , ete−2it}.

Then R(e(1+2i)t) = et cos(2t) and I(e(1+2i)t) = et sin(2t) are lin.
indep. real solutions, which generate the real fundamental system
MR ..= {et cos(2t), et sin(2t)}.

The corresponding general solution of the ODE is then

uh(t) = c1et cos(2t) + c2et sin(2t) c1, c2 ∈ R.
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Linear inhomogeneous ODEs

Consider a linear, inhomogeneous ODE of order m ∈ N

Am(t)u(m)(t) + ⋅ ⋅ ⋅ +A2(t)u′′(t) +A1(t)u′(t) +A0(t)u(t) = b(t) (3)

with coefficients Ak ,b ∈ C(I ).

If uh is the general solution of the corresponding homogeneous
equation (1) and up is a particular solution of (3), then the general
solution of (3) is given by

u(t) ∶= uh(t) + up(t)

Question: how to determine up? TO BE CONTINUED...
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Example 4
Determine the general solution of

u′′(t) − 2u′(t) + 5u(t) = 13e−2t . (4)

Hint: Look up for particular solutions of the type up(t) = Ce−2t , C ∈ R.

The general solution of (4) is given by u(t) = uh(t) + up(t), for uh general
solution of the corresponding homogeneous ODE

u′′(t) − 2u′(t) + 5u(t) = 0. (5)

In Example 3 we computed uh(t) = c1et cos(2t) + c2et sin(2t).

Substitute the ansatz up(t) = Ce−2t to find C :
u′p(t) = −2Ce−2t = −2up(t) Ô⇒ u′′p (t) = 4Ce−2t = 4up(t). Thus:

(4C + (−2)(−2)C + 5C)e−2t = 13e−2t Ô⇒ C = 1 Ô⇒ up(t) = e−2t

The general solution of (4) is:

u(t) = uh(t) + up(t) = c1et cos(2t) + c2et sin(2t) + e−2t , with c1, c2 ∈ R.
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Linear homogeneous systems of first-order ODEs

Consider a linear, homogeneous system of n ∈ N first-order ODEs

u′(t) = A(t) ⋅ u(t) (6)

with matrix of coefficients A ∈ C(I ,Rn×n) and u ∈ C1(I ,Rn).

There are exactly n linearly independent solutions (vectors!) of (6)

If u1,u2, . . . ,un ∈ C1(I ,Rn) are n linearly independent solutions of
(6), we say that they determine a basis (or a fundamental system)
of the space of solutions of (6)

The general solution of the homogeneous system (6) is given by

uh(t) ..= c1u1(t) + c2u2(t) + ⋅ ⋅ ⋅ + cnun(t), with ck ∈ R (7)
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If u1,u2, . . . ,un ∈ C1(I ,Rn) are n solutions of the homogeneous
system (6), the (function) matrix

W(t) ..= (u1(t) ∣ . . . ∣ un(t)) ↝ uk column vectors

is called a solution matrix of (6). In case u1,u2, . . . ,un are even
linearly independent, W is a fundamental solution matrix
(or Wronski matrix) of (6).

Note: {u1, . . . ,un} basis of C1(I ,Rn) ⇐⇒ {u1(t), . . . ,un(t)} basis
of Rn, for every t ∈ I ⇐⇒ det(W(t)) ≠ 0, for every t ∈ I .

We may express the general solution (7) of (6) via the fundamental
matrix:

uh(t) =W(t) ⋅C, with C ∈ Rn.

Question: how to determine u1, . . . ,um?
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Linear hom. systems with constant coefficients

In case the coefficients in (6) are constants, we get:

u′(t) = A ⋅ u(t) (8)

with matrix of coefficients A ∈ Rn×n.

Compute the characteristic polynomial of (8) as

P(λ) ..= det(A − λIn)

If λ is an eigenvalue of A (i.e. a root of P) with corresponding
eigenvector v, then the function u(t) ..= eλtv is a solution of (8).
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Example 5
For the homogeneous linear system with constant coefficients

u′(t) = (4 5
1 0
) ⋅ u(t) (9)

we compute the eigenvalues: P(λ) = det(4 − λ 5
1 −λ) = λ

2 − 4λ − 5 =

= (λ + 1)(λ − 5) = 0 ⇐⇒ λ1 = −1 ∨ λ2 = 5, and thus the eigenvectors:
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u′(t) = (4 5
1 0
) ⋅ u(t) (9)

we compute the eigenvalues: P(λ) = det(4 − λ 5
1 −λ) = λ

2 − 4λ − 5 =

= (λ + 1)(λ − 5) = 0 ⇐⇒ λ1 = −1 ∨ λ2 = 5, and thus the eigenvectors:

(4 − (−1) 5
1 −(−1)) ⋅v1 = 0 ⇐⇒ (5 5

1 1
) ⋅v1 = 0, set for ex. v1 = (

1
−1)

(4 − 5 5
1 −5) ⋅ v2 = 0 ⇐⇒ (−1 5

1 −5) ⋅ v2 = 0, set for ex. v2 = (
5
1
) .

Then two linearly independent solutions of (9) are: u1(t) ..= v1 ⋅ eλ1t =

( e
−t

−e−t) and u2(t) ..= v2 ⋅ eλ2t = (5e
5t

e5t )

and Wronski matrix W(t) = ( e
−t 5e5t

−e−t e5t ) .
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Linear hom. systems with constant coefficients
Whenever for the linear system

u′(t) = A ⋅ u(t), A ∈ Rn×n (8)

we cannot find n eigenvectors of A, we need to complete the basis...

For λ ∈ C eigenvalue of A and v a corresponding eigenvector, we say that
w ∈ Cn is a generalized eigenvector (of rank 1) of A if (A − λIn)w = v.

In such a case, the functions eλtv and eλt
(w + tv) are two linearly

independent solutions of the homogeneous system (6).
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w ∈ Cn is a generalized eigenvector (of rank 1) of A if (A − λIn)w = v.

In such a case, the functions eλtv and eλt
(w + tv) are two linearly

independent solutions of the homogeneous system (6).

Remark: If λ ∈ C is root of the characteristic polynomial P of (8) with
corresponding eigenvector v, then (λ, v) is another eigenvalue/vector pair
Ô⇒ eλtv, eλtv are two complex, linearly independent solutions of (8)
Ô⇒ R(eλtv),I(eλtv) are two real, linearly independent solutions of (8).
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Example 6
For the homogeneous linear system with constant coefficients

u′(t) = ( 1 25
−1 −9) ⋅ u(t) (10)

we compute the eigenvalues: P(λ) = det(1 − λ 25
−1 −9 − λ) = λ

2 + 8λ + 16 =

= (λ + 4)2 = 0 ⇐⇒ λ = −4 with algebraic multiplicity d = 2.
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For the homogeneous linear system with constant coefficients

u′(t) = ( 1 25
−1 −9) ⋅ u(t) (10)

we compute the eigenvalues: P(λ) = det(1 − λ 25
−1 −9 − λ) = λ

2 + 8λ + 16 =

= (λ + 4)2 = 0 ⇐⇒ λ = −4 with algebraic multiplicity d = 2.

Eigenvector(s):

(1 − (−4) 25
−1 −9 − (−4)) ⋅ v = 0 ⇐⇒ ( 5 25

−1 −5) ⋅ v = 0↝ v = (−5
1
)

Ô⇒ one solution is u1(t) = v ⋅ eλt = (−5e
−4t

e−4t
) .
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Example 6
For the homogeneous linear system with constant coefficients

u′(t) = ( 1 25
−1 −9) ⋅ u(t) (10)

we compute the eigenvalues: P(λ) = det(1 − λ 25
−1 −9 − λ) = λ

2 + 8λ + 16 =

= (λ + 4)2 = 0 ⇐⇒ λ = −4 with algebraic multiplicity d = 2.

We still need n−1 = 1 element of the basis: compute a generalized eigenvector

w: (A − λI2)w = v ⇐⇒ ( 5 25
−1 −5) ⋅w = (

−5
1
), set for ex. w = (−1

0
) .

Another lin. indep. sol of (10) is u2(t) = eλt(w + tv) = (
−(1 + 5t)e−4t

te−4t
) .
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Linear inhomogeneous systems of first-order ODEs

Consider a linear, inhomogeneous system of n ∈ N first-order ODEs

u′(t) = A(t) ⋅ u(t) + b(t) (11)

with matrix A ∈ C(I ,Rn×n), inhomogeneity b ∈ C(I ,R) and u ∈ C1(I ,Rn).

If uh is the general solution of the corresponding homogeneous system
and up is a particular solution of (11), then the general solution of
(11) is given by

u(t) ..= uh(t) + up(t)

Question: how to determine up? TO BE CONTINUED...
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From ODEs to systems
Given a (scalar) ODE of any order n ∈ N (for example, in explicit form)

u(n) = f (t,u,u′,u′′, . . . ,u(n−1)) for u ∶ I → R, (12)

we introduce the functions u1,u2, . . . ,un ∶ I → R defined as

u1
..= u, u2

..= u1
′
= u′, u3

..= u2
′
= u′′, . . . ,un

..= (un−1)′ = u(n-1),

from which un
′
= u(n). We rewrite the ODE in (12) as

un
′ = f (t,u1,u2,u3, . . . ,un)

Taking into account the definitions of u1, . . . ,un, we obtained the
system of n ODEs of first-order:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1
′ = u2

u2
′ = u3

⋮ ⋮
(un−1)′ = un
(un)′ = f (t,u1,u2,u3, . . . ,un)
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Linear ODEs of n-th order as linear systems of n
first-order ODEs

Specifically, if the ODE in (12) is linear of order n, i.e. in the explicit form

u(n) = b − a0u − a1u
′ − ... − an−1u(n−1) (13)

with a0, a1, . . . , an−1,b ∶ I → R functions on I ⊆ R, then u is solution of
(13) if and only if (u1,u2, . . . ,un) solves the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1
′ = u2

u2
′ = u3

⋮ ⋮
(un−1)′ = un
un
′ = b − a0u − a1u

′ − ... − an−1u(n−1)

(14)
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Let u(t) ..=
⎛
⎜⎜
⎝

u1(t)
u2(t)
⋮

un(t)

⎞
⎟⎟
⎠

and B(t) ..=
⎛
⎜⎜
⎝

0
0
⋮

b(t)

⎞
⎟⎟
⎠

be vectors of n components,

A =
⎛
⎜⎜
⎝

0 1 0 . . .
0 0 1 . . .
. . . . . . . . . . . .
−a0(t) −a1(t) . . . −an−1(t)

⎞
⎟⎟
⎠

matrix of order n.

Rewrite (14) as
u′(t) = A(t) ⋅ u(t) +B(t).

The following bijection holds:

{
linear n-th order ODEs

in explicit form } ⇐⇒ {linear systems of n ODEs
of order 1

}

u(n)(t) = b(t) −
n−1
∑
i=0

ai(t)u(i)(t) ←→ u′(t) = A(t) ⋅ u(t) +B(t)
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Example 7
Rewrite the following IVP of a third order ODE

⎧⎪⎪⎨⎪⎪⎩

3u′′′ + 4t cos(2t)u′ − etu + 6t = 12, t > 5;
u(5) = −1, u′(5) = 0, u′′(5) = 2

(15)

as an initial value problem for a first-order system.
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⎧⎪⎪⎨⎪⎪⎩

3u′′′ + 4t cos(2t)u′ − etu + 6t = 12, t > 5;
u(5) = −1, u′(5) = 0, u′′(5) = 2

(15)

as an initial value problem for a first-order system.
Set u1

..= u, u2
..= u1

′ = u′, u3
..= u2

′ = u′′ Ô⇒ u3
′ = u′′′.

Substituting into (15) returns : 3u3
′ + 4t cos(2t)u2 − etu1 + 6t = 12

Ô⇒ u3
′ = (−4t cos(2t)u2 + etu1 + 12 − 6t)/3.

⎛
⎝
u1
′

u2
′

u3
′

⎞
⎠
=
⎛
⎝

0 1 0
0 0 1

et/3 −4t cos(2t)/3 0

⎞
⎠
⎛
⎝
u1

u2

u3

⎞
⎠
+
⎛
⎝

0
0

4 − 2t

⎞
⎠

u′ = A u + B

with u(5) =
⎛
⎝
u1(5)
u2(5)
u3(5)
⎞
⎠
=
⎛
⎝
u(5)
u′(5)
u′′(5)

⎞
⎠
=
⎛
⎝
−1
0
2

⎞
⎠
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Exercise

Consider the following linear homogeneous ODE in u = u(t):

u(5) − 4u(4) + 9u
′′′ − 18u′′ + 20u′ − 8u = 0. (16)

with initial conditions

u(0) = 1, u′(0) = 1, u′′(0) = 0, u′′′(0) = −3, u(4)(0) = −10

(i) Determine a real fundamental system and the general solution of (16).
(ii) Write (16) in explicit form in the domain {t ∈ R ∶ t > 0}.
(iii) Rewrite (16) as a system of first-order ODEs.
(iv) Find a Wronski matrix and the general solution of the system in (iii).

Compare it with the result of (i).
(v) Solve the corresponding initial value problem with the prescribed

values.
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