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Linear homogeneous ODEs

Consider a linear, homogeneous differential equation of order me N
Am(B)ul™ () + -+ Ap(£)u" () + AL () U () + Ao(t)u(t) =0 (1)
with coefficients Ax € C(/).

@ There are exactly m linearly independent solutions of (1)

o If up,up,...,unm are m linearly independent solutions of (1), then they
build a basis of the space of solutions of (1) and M := {u1,...,um}
defines a fundamental system of the ODE (1)

@ The general solution of the (homogeneous) ODE (1) is given by
up(t) := crur(t) + coua(t) + -+« + Cmum(t), with ¢, € R.

@ Question: how to determine uy, ..., um?
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Linear hom. ODEs with constant coefficients
In case the coefficients in (1) are constants, we get:
amu\™ (£) + am_1 ™V (8) + -+ apu”(8) + aru’ (1) + agu(t) =0 (2)
for a, € R.
e We define the characteristic polynomial of (2) as
P(X\) = amA™ + am 1 A" 4o+ @M% + ap\ + ag

e If \is a root (zero) of P, then the function e*t solves (2)

e If \is a root of P with (algebraic) multiplicity d € N, then
M, p.e M, L, Nt

are d linearly independent solutions of (2)
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Example 1

Write a fundamental system and the general solution of the ODE
u® (t) =5u™ (t) +6u" (t) +4u’ (t) —8u(t) = 0.
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Example 1

Write a fundamental system and the general solution of the ODE
u® () = 50" (t) +6u" (t) +4u’ (t) —8u(t) = 0.

Characteristic polynomial: P(A) = A* =5 3 +6X2 +4X -8 = (A +1)(A-2)3.

Roots of P are:

tis a solution

@ A1 = -1, with multiplicity dy =1 — e~
@ )\ =2, with multiplicity d» =3 = €%t, te®!, t?e?! are other linearly

independent solutions
Hence, a fundamental system is given by M = {e™*, €%, te?!, t?e*'}
and the general solution is

2

up(t) = cre”t + et + cate® + gyt?e®, ck € R.
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Complex and real fundamental systems

@ Recall: any polynomial of degree m € N with real (or complex)
coefficients has exactly m roots in C (counted with their multiplicity).

o If \e C\R is a root of the characteristic polynomial P associated to
(2) with real coefficients, then its complex conjugate A is still root of
P, since

T m —k_ m k__ B
P()\)—I;)ak)\ —k;)akA =P(\) = 0.

Meaning: complex solutions always appear in pairs of conjugates!
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Complex and real fundamental systems
@ Recall: any polynomial of degree m € N with real (or complex)
coefficients has exactly m roots in C (counted with their multiplicity).

o If \e C\R is a root of the characteristic polynomial P associated to
(2) with real coefficients, then its complex conjugate A is still root of
P, since

P(X)= Zak)\ —ZakAk—P()\)

A root
Meaning: complex solutions always appear in pairs of conjugates!

Example 2

The ODE u" - 2u' +5u = 0 has characteristic polynomial
P(X\)=X2-2)\+5. Solve: P(A\) =0 <= A2 -2)\+5 < A=1x2]

Then a (complex) fundamental system is given by {e(1*2")t (1’2"”} and

the general solution is: uy(t) = c;e(M2)t 4 (1720t = ¢ et 2t 4 ¢yete2M,
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Complex and real fundamental systems

Euler formula: for 6 € R, it is e*'? = cos(f) + isin(h).

IfA=a+ibeC (a,beR, b#0), & = (@bt = e cos(bt) + ie™ sin(bt).
Let A\ = a— ib be its complex conjugate.

At L oAt

R(eM) = e cos(bt) = % ~ real part of et

At At

T imaginary part of et
1

3(eM) = et sin(bt) = °
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Complex and real fundamental systems

Euler formula: for 6 € R, it is e*'? = cos(f) + isin(h).

If X=a+ibeC (a,beR, b#0), eM = e(atb)t — @3t cos(pt) + je?t sin(bt).
Let A\ = a— ib be its complex conjugate.
Mt 4 At

R(eM) = e cos(bt) = — real part of e’

At At

TR imaginary part of e*t
1

3(eM) = et sin(bt) = °

If X is root of the characteristic polynomial P of (2) (hence even )
— &M eM are two complex, linearly independent solutions of (2)

— R(e*),T(e?) are two real, linearly independent solutions of (2).
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Example 3

Determine a real fundamental system and the (real) general solution of

u"(t) -2u'(t) +5u(t) = 0.
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Example 3

Determine a real fundamental system and the (real) general solution of

u"(t) -2u'(t) +5u(t) = 0.

From Example 2 we know that e(*2)t and e(1-20t e 2 |in. in-

dep. complex solutions, which generate the complex fundamental system
M(C = {ete2’t, ete‘z’t}.
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Example 3

Determine a real fundamental system and the (real) general solution of
u"(t) -2u'(t) +5u(t) = 0.

(1+2i)t (1-2i)t

From Example 2 we know that e and e are 2 lin. in-
dep. complex solutions, which generate the complex fundamental system
M(C = {ete2’t, ete—ZIt}_

Then R(e(*2)t) = efcos(2t) and J(e(1*2Dt) = efsin(2t) are lin.
indep.  real solutions, which generate the real fundamental system
Mg := {e' cos(2t), e'sin(2t)}.

The corresponding general solution of the ODE is then

up(t) = cref cos(2t) + cpetsin(2t) c1,6 €R.
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Linear inhomogeneous ODEs

Consider a linear, inhomogeneous ODE of order me N
Am()ul™ (£) + -+ Ag(£)u" (t) + AL (£) U (£) + Ao (D)u(t) = b(t)  (3)

with coefficients Ay, be C(/).

@ If uy is the general solution of the corresponding homogeneous
equation (1) and u, is a particular solution of (3), then the general
solution of (3) is given by

u(t) = up(t) + up(t)

@ Question: how to determine u,? TO BE CONTINUED...
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Example 4

Determine the general solution of
u"(t) = 2u'(t) + 5u(t) = 13e7%, (4)
Hint: Look up for particular solutions of the type u,(t) = Ce™%t, C € R.
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Example 4
Determine the general solution of
u"(t) = 2u'(t) + 5u(t) = 13e7%, (4)
Hint: Look up for particular solutions of the type u,(t) = Ce™%t, C € R.
The general solution of (4) is given by u(t) = up(t) + up(t), for up general
solution of the corresponding homogeneous ODE
u"(t) - 2u'(t) +5u(t) = 0. (5)

In Example 3 we computed up(t) = ciet cos(2t) + cpet sin(2t).
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Example 4

Determine the general solution of
u"(t) = 2u'(t) + 5u(t) = 13e7%, (4)
Hint: Look up for particular solutions of the type u,(t) = Ce™%t, C € R.

The general solution of (4) is given by u(t) = up(t) + up(t), for up general
solution of the corresponding homogeneous ODE

u"(t) - 2u'(t) +5u(t) = 0. (5)
In Example 3 we computed up(t) = ciet cos(2t) + cpet sin(2t).

Substitute the ansatz u,(t) = Ce 2t to find C:
up(t) = —2Ce %t = 2up(t) = uy(t) = 4Ce ! = 4up(t). Thus:

(4C+(-2)(-2)C+5C)e ' =13e = C=1 = up(t)=e

The general solution of (4) is:

u(t) = up(t) + up(t) = cref cos(2t) + cretsin(2t) + e, with ¢;, ¢ € R.
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Linear homogeneous systems of first-order ODEs
Consider a linear, homogeneous system of n e N first-order ODEs
u’(t) = A(t) -u(t) (6)
with matrix of coefficients A € C(/,R™") and u e C*(/,R").
@ There are exactly n linearly independent solutions (vectors!) of (6)

o Ifug,uy,...,u, e CY(/,R") are n linearly independent solutions of
(6), we say that they determine a basis (or a fundamental system)
of the space of solutions of (6)

@ The general solution of the homogeneous system (6) is given by

up(t) = crug(t) + cua(t) + -+ + cpupn(t), with ¢, e R (7)
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o Ifug,uz,...,u, e CY(/,R") are n solutions of the homogeneous
system (6), the (function) matrix

W(t) = (ui(t) | ... |up(t)) ~ uk column vectors

is called a solution matrix of (6). In case uj,uy,...,u, are even
linearly independent, W is a fundamental solution matrix
(or Wronski matrix) of (6).

Note: {u1,...,u,} basis of C1(/,R") <= {ui(t),...,u,(t)} basis
of R", for every t e | < det(W(t)) #0, for every t €.

e We may express the general solution (7) of (6) via the fundamental
matrix:

up(t) =W(t)-C, with C e R".

@ Question: how to determine uy,...,um?
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Linear hom. systems with constant coefficients

In case the coefficients in (6) are constants, we get:

u'(t) = A-u(t) (8)

nxn

with matrix of coefficients A ¢ R

e Compute the characteristic polynomial of (8) as
P()) := det(A - Al,)

o If A is an eigenvalue of A (i.e. a root of P) with corresponding
eigenvector v, then the function u(t) := e v is a solution of (8).
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Example 5

For the homogeneous linear system with constant coefficients

w0} 5)-u ©)

4-x 5\ )
A EPSETOTE

=(A+1)(A=-5)=0 < A\ =-1 v \p =5, and thus the eigenvectors:

we compute the eigenvalues: P(\) = det
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Example 5

For the homogeneous linear system with constant coefficients

iy (45

w0} 5)-u (
4-X 5Y) ., ~
N EPSEO S
=(A+1)(A=-5)=0 < A\ =-1 v \p =5, and thus the eigenvectors:

. (4— g—l) _(?1)) V=0 > (? ?) vy =0, set for ex. vy = (_11)

4—5 5 _1 5 5
°( 1 —5)"’2‘0‘:’(1 _5)‘V2—0,setforex.vz_(l)_

we compute the eigenvalues: P(\) = det
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Example 5

For the homogeneous linear system with constant coefficients

o(t) - (‘1‘ g).um )

4-x 5\ )
A EPSETOTE

=(A+1)(A=-5)=0 < A\ =-1 v \p =5, and thus the eigenvectors:

. (4— g—l) _(?1)) V=0 > (? ‘;’) vy =0, set for ex. vy = (_11)

4—5 5 _1 5 5
°( 1 —5)"’2‘0‘:’(1 _5)‘V2—0,Setforex.v2_(1)_

Then two linearly independent solutions of (9) are: up(t) := vy - eMt =
5edt

-t
€ Aot
and us(t) := vy - ™2t =
(_et) 2( ) 2 (e5t

—t 5651’
and Wronski matrix W(t) = ( ) .

we compute the eigenvalues: P(\) = det

e
_et @Bt

Differential Equations | Auditorium Exercise Sheet 4 14 /22



Linear hom. systems with constant coefficients

Whenever for the linear system
u'(t)=A-u(t), AeR™" (8)

we cannot find n eigenvectors of A, we need to complete the basis...

For A € C eigenvalue of A and v a corresponding eigenvector, we say that
w € C" is a generalized eigenvector (of rank 1) of A if (A - Al,)w = v. J

In such a case, the functions e*v and e*(w + tv) are two linearly
independent solutions of the homogeneous system (6).

Differential Equations | Auditorium Exercise Sheet 4 15 /22



Linear hom. systems with constant coefficients

Whenever for the linear system
u'(t)=A-u(t), AeR™" (8)
we cannot find n eigenvectors of A, we need to complete the basis...

For A € C eigenvalue of A and v a corresponding eigenvector, we say that
w € C" is a generalized eigenvector (of rank 1) of A if (A - Al,)w = v. J

In such a case, the functions e*v and e*(w + tv) are two linearly
independent solutions of the homogeneous system (6).

Remark: If A € C is root of the characteristic polynomial P of (8) with
corresponding eigenvector v, then (A, V) is another eigenvalue/vector pair
A A

= e’v, eV are two complex, linearly independent solutions of (8)

— R(e*v),T(eMv) are two real, linearly independent solutions of (8).
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Example 6

For the homogeneous linear system with constant coefficients

W (t) = (_11 fg)-u(t) (10)

1-X 25 2 B
1 _9_)\)—>\ +8\+16=

= (A+4)?>=0 < )= -4 with algebraic multiplicity d = 2.

we compute the eigenvalues: P(\) = det
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Example 6

For the homogeneous linear system with constant coefficients

wu):(i fg)wmﬂ (10)

1-2 25 ) ., )
o _9_)\)—>\ +8)\+16=

=(A+4)2=0 < \=—4 with algebraic multiplicity d = 2.

we compute the eigenvalues: P(\) = det

o Eigenvector(s):

1-(-4) 25 5 25 -5
( 1 _9_(_4))-v=0<=>(_1 _5)-V=0~7V=(1)

. . A —56_4t
= one solution is uy(t) =v-e' = ot |
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Example 6

For the homogeneous linear system with constant coefficients
o (1 25
u'(t) = (_1 _9) u(t) (10)
1-X 25

-1 -9-A
=(A+4)2=0 < \=—4 with algebraic multiplicity d = 2.

we compute the eigenvalues: P(\) = det ) =A2+8)\+16=

@ Westill need n—1 = 1 element of the basis: compute a generalized eigenvector
5 25 -5 -1
w: (A—)\Ig)w_v<=>(_1 _5)-w—(1),setforex.w—(o).

_ —4t
Another lin. indep. sol of (10) is ua(t) = eM(w + tv) = ( (1 ::izze )
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Linear inhomogeneous systems of first-order ODEs

Consider a linear, inhomogeneous system of n e N first-order ODEs
u'(t) = A(t) -u(t) +b(t) (11)

with matrix A € C(/,R™"), inhomogeneity b € C(/,R) and u e C*(/,R").

@ If uy, is the general solution of the corresponding homogeneous system
and u,, is a particular solution of (11), then the general solution of
(11) is given by

u(t) == up(t) +up(1)

@ Question: how to determine u,? TO BE CONTINUED...
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From ODEs to systems

Given a (scalar) ODE of any order n € N (for example, in explicit form)
ulm = f(t,u, v, u",...,u("_l)) foru: 1l - R, (12)
we introduce the functions uq, u,...,u,: | - R defined as
wm=u, wi=w =u, uz=w =u”, U= (Ugq) = 0™,

from which u,’ = u(™. We rewrite the ODE in (12) as

up' = f(t,ur, up,u3,. .., up)
Taking into account the definitions of w1, ..., u,, we obtained the
system of n ODEs of first-order:

u' = up

u' = u3

(un—l), = Up
(un), = f(t; ui, uz,us,..., un)
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Linear ODEs of n-th order as linear systems of n
first-order ODEs

Specifically, if the ODE in (12) is linear of order n, i.e. in the explicit form

u =b—agu-aiu —...—ap_u" D (13)
with ag, a1,...,a,-1,b: 1 — R functions on | ¢ R, then u is solution of
(13) if and only if (u1, up, ..., up) solves the system

u' = up
u' = u3
(14)
(un—l), = up
uy =b-apu-au —...—a,_qut™D
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up(t) 0

Let u(t) := u2:(t) and B(t) := 0 be vectors of n components,
up(t) b(t)
0 1 0
A=| ° 0 ! matrix of order n.

“ao(t) —au(t) ... —ana(t)
Rewrite (14) as
u'(t) = A(t) -u(t) + B(t).

@ The following bijection holds:

{Imear n-th order ODEs} — {Iinear systems of n ODEs}
in epr|C|t form of order 1

u(")(t):b(t)—Z(:)ai(t)u(i)(t) — u'(t) = A(t) -u(t) + B(t)
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Example 7
Rewrite the following IVP of a third order ODE

3u"" +4tcos(2t)u’ - efu+6t=12, t>5;
u(5)=-1, v'(5)=0, v'(5)=2

as an initial value problem for a first-order system.
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Example 7
Rewrite the following IVP of a third order ODE

3u"" +4tcos(2t)u’ - efu+6t=12, t>5;
u(5)=-1, v'(5)=0, v'(5)=2

as an initial value problem for a first-order system.
Setup:=u, hi=u' =u, i3 =w' =uv" = w3’ =u".

Substituting into (15) returns : 3us’ + 4t cos(2t)uy — euy + 6t = 12
= u3' = (—4tcos(2t)ur + etuy + 12 - 6t)/3.

u’ 0 1 0\ [t 0
U2’ = 0 0 1 uz | + 0
us’ e'/3 -4tcos(2t)/3 0) \us 4-2t

u = A u + B

u1(5) u(5) -1
with u(5) = wB) | = vG) |=| 0
u3(5) u"(5) 2
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Exercise

Consider the following linear homogeneous ODE in u = u(t):
u® —au™® 194" — 184" + 204" - 8u = 0. (16)
with initial conditions
u(0) =1, 4/(0) =1, u”(0) =0, u""(0) = -3, u™(0)=-10
(i) Determine a real fundamental system and the general solution of (16).
(if) Write (16) in explicit form in the domain {t e R: t > 0}.
(iii) Rewrite (16) as a system of first-order ODEs.

(iv) Find a Wronski matrix and the general solution of the system in (iii).
Compare it with the result of (i).

(v) Solve the corresponding initial value problem with the prescribed
values.
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