Auditorium Exercise Sheet 3 Differential Equations I for Students of Engineering Sciences

Eleonora Ficola Department of Mathematics, Universität Hamburg

Technische Universität Hamburg

Winter Semester 2024/2025

18.11.2024

Table of contents

Prototypical first-order differential equations

- Similarity ODE
- Riccati equation

Prototypical higher-order differential equations

Euler-Cauchy equation

3 Exact differential equations

• Exact ODEs and resolution by potentials

Similarity ODE

A first-order ODE of the type

$$u'(t) = f\left(\frac{u(t)}{t}\right) \tag{1}$$

for some function $f: I \to \mathbb{R}$ is called a similarity equation.

It can be solved by applying a change of variables: setting $y(t) := \frac{u(t)}{t}$, it is $u'(t) = \frac{d}{dt}(t \cdot y(t)) = y(t) + ty'(t)$. Thus (1) becomes

 $y(t) + ty'(t) = f(y(t)) \rightarrow$ separable variables ODE in y

Finally, substitute back to find u general sol. of (1).

Find the general solution of the ODE

$$u'=\frac{t^4+u^4}{tu^3},\qquad t\neq 0.$$

Find the general solution of the ODE

$$u'=\frac{t^4+u^4}{tu^3}, \qquad t\neq 0.$$

Rewriting the equation it is $u' = \left(\frac{t}{u}\right)^3 + \frac{u}{t}$, which is a similarity equation with $f(y) = y + y^{-3}$ for $y(t) := \frac{u}{t}$. Apply the substitution:

$$y(t) := \frac{u}{t} \implies u(t) = ty(t) \implies u'(t) = y(t) + ty'(t).$$

We obtain the separable variable ODE: $y' + ty' = y' + y^{-3}$

$$\int y^{3} dy = \int y^{3} y' dt = \int \frac{1}{t} dt$$
$$y^{4}(t) = 4 \ln|t| + C \implies y(t) = \pm (\ln(t^{4}) + C)^{1/4}, \ C \in \mathbb{R}$$

Substitute back: $u(t) = ty(t) = \pm t(\ln(t^4) + C)^{1/4}$, $C \in \mathbb{R}$.

Riccati equation^{*}

A first order (non-linear) equation of the form

$$u'(t) = a(t)u(t) + b(t)u^{2}(t) + c(t), \text{ with } a, b, c \in C(I)$$
 (2)

is called Riccati differential equation.

Suppose we know a **particular solution** u_p of (2). Then the function $v(t) := u(t) - u_p(t)$ solves the Bernoulli ODE $v'(t) = [a(t) + 2b(t)u_p(t)]v(t) + b(t)v^2(t)$.

Thus setting $y(t) := v^{-1}(t) = \frac{1}{u(t)-u_p(t)}$, we find the first-order linear ODE

$$y'(t) = -y(t)[a(t) + 2b(t)u_p(t)] - b(t)$$
(3)

to be solved in y. Finally, substitute back to find u general sol. of (2).

Studied by the Venetian mathematician Jacopo Riccati (1676-1754)

Find the general solution of the ODE $u' = -u^2 + \frac{2}{t^2}$, for u = u(t) and t > 0. It is a Riccati equation with a(t) = 0, b(t) = -1 and $c(t) = \frac{2}{t^2}$. Taking $u_p(t) = \frac{k}{t}$, $k \in \mathbb{R}$ as Ansatz for a particular solution, find the appropriate k.

Find the general solution of the ODE $u' = -u^2 + \frac{2}{t^2}$, for u = u(t) and t > 0. It is a Riccati equation with a(t) = 0, b(t) = -1 and $c(t) = \frac{2}{t^2}$. Taking $u_p(t) = \frac{k}{t}$, $k \in \mathbb{R}$ as Ansatz for a particular solution, find the appropriate k.

By substitution we see that $u_p(t) = -1/t$ is a solution. Let $y(t) := \frac{1}{u(t)-u_p(t)}$, and applying (3) the ODE becomes:

$$y'(t) = -y(t)[0+2(-1)(-1/t)] + 1 = 1 - 2y(t)/t$$

Solving the latter in y yields $y(t) = \frac{t^3+C}{3t^2}$, for $C \in \mathbb{R}$.

Returning to *u* we obtain:

$$u(t) = u_{p}(t) + \frac{1}{y(t)} = -\frac{1}{t} + \frac{3t^{2}}{t^{3} + C} = \frac{2t^{3} - C}{t(t^{3} + C)} \quad \lor \quad u(t) = u_{p}(t) = -1/t$$

Euler-Cauchy equation^{*}

A special type of linear homogeneous ODE of arbitrary order m

$$a_m t^m u^{(m)}(t) + \dots + a_2 t^2 u^{\prime\prime}(t) + a_1 t u^{\prime}(t) + a_0 u(t) = 0$$

with $a_i \in \mathbb{R}$ and $a_m \neq 0$ is called **Euler-Cauchy differential equation**. In particular, we consider the second-order case:

$$a_2 t^2 u''(t) + a_1 t u'(t) + a_0 u(t) = 0$$
(4)

Named after the Swiss mathematician Leonhard Euler (1707–1783) and the French mathematician/engineer Augustin-Louis Cauchy (1789-1857).

Euler-Cauchy equation^{*}

A special type of linear homogeneous ODE of arbitrary order m

$$a_m t^m u^{(m)}(t) + \dots + a_2 t^2 u^{\prime\prime}(t) + a_1 t u^{\prime}(t) + a_0 u(t) = 0$$

with $a_i \in \mathbb{R}$ and $a_m \neq 0$ is called **Euler-Cauchy differential equation**. In particular, we consider the second-order case:

$$a_2 t^2 u''(t) + a_1 t u'(t) + a_0 u(t) = 0$$
(4)

When solving in t > 0, we can apply the substitution $s := \ln(t)$, from which $t = e^s$, and introducing the function $y(s) := u(e^s) = u(t)$ we obtain:

$$y'(s) = tu'(t)$$

$$y''(s) = t^{2}u''(t) + tu'(t) \implies t^{2}u''(t) = y''(s) - y'(s)$$

Inserting into (4) returns the following second-order linear homogeneous ODE with constant coefficients:

$$a_2(y''(s) - y'(s)) + a_1y'(s) + a_0y(s) = 0$$

Named after the Swiss mathematician Leonhard Euler (1707–1783) and the French mathematician/engineer Augustin-Louis Cauchy (1789-1857).

Exact differential equations

Let $D \subseteq \mathbb{R}^2$ open. A first order ODE of the form

$$f(t, u(t)) + g(t, u(t)) \cdot u'(t) = 0$$
(5)

is called exact in D if there exists a C^1 potential $\psi: D \to \mathbb{R}$ such that

$$\begin{cases} \frac{\partial \psi}{\partial t}(t, u) = f(t, u) \\ \frac{\partial \psi}{\partial u}(t, u) = g(t, u), \end{cases}$$

for all $(t, u) \in D$. In such a case, u = u(t) solves (5) if and only if

$$\begin{aligned} \frac{\mathrm{d}\psi}{\mathrm{d}t}(t,u(t)) &= \frac{\partial\psi}{\partial t}(t,u(t)) + \frac{\partial\psi}{\partial u}(t,u)\frac{\mathrm{d}u}{\mathrm{d}t} = f(t,u) + g(t,u) \cdot u'(t) = 0\\ \iff \psi(t,u(t)) = K, \text{ for every } K \in \mathbb{R}. \end{aligned}$$

Necessary and sufficient conditions to exact ODEs

Determining if an ODE of the kind

$$f(t, u(t)) + g(t, u(t)) \cdot u'(t) = 0$$
(5)

is exact by applying the definition may not be immediate. For this reason, we make use of the following criterion:

Theorem (integrability criterion for exact ODEs) If f and g are $C^1(D)$ with $D \subseteq \mathbb{R}^2$ simply connected, then:

(5) is exact in
$$D \iff \frac{\partial f}{\partial u}(t, u) = \frac{\partial g}{\partial t}(t, u)$$
, for all $(t, u) \in D$.

Necessary and sufficient conditions to exact ODEs

Determining if an ODE of the kind

$$f(t, u(t)) + g(t, u(t)) \cdot u'(t) = 0$$
(5)

is exact by applying the definition may not be immediate. For this reason, we make use of the following criterion:

Theorem (integrability criterion for exact ODEs) If f and g are $C^1(D)$ with $D \subseteq \mathbb{R}^2$ simply connected, then:

(5) is exact in
$$D \iff \frac{\partial f}{\partial u}(t,u) = \frac{\partial g}{\partial t}(t,u)$$
, for all $(t,u) \in D$.

Example: the differential equation $2tu(t) + (t^2 + u^2(t) + 3u(t))u'(t) = 0$ is exact in \mathbb{R}^2 , since $\frac{\partial \mathbf{f}}{\partial u}(t, u) = 2t = \frac{\partial \mathbf{g}}{\partial t}(t, u)$ for every $(t, u) \in \mathbb{R}^2$.

Integrating factor

In case the ODE

$$f(t, u(t)) + g(t, u(t)) \cdot u'(t) = 0$$
(5)

is NOT exact, we look for an equivalent equation (i.e. with same solution) multiplying (5) by an integrating factor $h = h(t, u(t)) \neq 0$, that is

$$h(t, u(t)) \cdot f(t, u(t)) + h(t, u(t)) \cdot g(t, u(t)) \cdot u'(t) = 0, \qquad (6)$$

Integrating factor

In case the ODE

$$f(t, u(t)) + g(t, u(t)) \cdot u'(t) = 0$$
(5)

is NOT exact, we look for an equivalent equation (i.e. with same solution) multiplying (5) by an **integrating factor** $h = h(t, u(t)) \neq 0$, that is

$$h(t, u(t)) \cdot f(t, u(t)) + h(t, u(t)) \cdot g(t, u(t)) \cdot u'(t) = 0, \qquad (6)$$

and setting the integrability criterion for $h \cdot f$, $h \cdot g$:

$$\frac{\partial hf}{\partial u}(t,u) = \frac{\partial hg}{\partial t}(t,u) \implies (6) \text{ exact.}$$

To determine h, look first for Ansatz of the type h = h(t) or h = h(u). Once h is obtained, solve the exact ODE (6) by finding a potential and setting $\psi(t, u(t)) = K$, with $K \in \mathbb{R}$ arbitrary.

Exercises

Exercise 1. Solve the following Euler-Cauchy differential equation

$$2t^2 \cdot u'' + tu' - 3u = 0, \quad t > 0.$$

Hint: linear, homogeneous ODEs in s with constant coefficients admit solutions of the type $e^{\lambda s}$...

Exercise 2. Solve by substitution the following similarity differential equations.

(*i*)
$$u' = \frac{u+2t}{t}, t \neq 0$$

(*ii*) $\dot{x} = \frac{t^2 + x^2}{tx}, t \neq 0$

Exercise 3. Solve the following Riccati differential equations. Use the hints to find a particular solution first.

(i)
$$u' + 6u^2 = 1/t^2$$
, $t > 0$
with particular sol. $u_p(t) := \frac{\alpha}{t} + \beta$
(ii) $u' + 4t = tu^2$
with particular sol. a constant
(iii) $x^3u' + x^2u - u^2 = 2x^4$, $x > 1$
with particular sol. a polynomial of degree 2 in x

Exercise 4. For any of the following differential equations, determine:

- Which one are exact.
- For each exact equation, compute a corresponding potential ψ .
- For each non-exact equation, determine an integrating factor h = h(t, u) such that the new ODE is exact.
- Determine the general solution of the exact ODEs by solving the (algebraic) level set equation for the potential $\psi(t, u(t)) = K$.

(i)
$$2tu + (t^2 + 3)u' = 0$$

(ii) $u' + 2tu = e^{t-t^2}$
(iii) $u + (x - 1)u' = -2x, x > 1$
(iv) $3x^2 + u^2 + 2u(1 + x)u' = 0, x \in (1, 10)$
(v) $-u\cos(t) = u'(\sin(t) + \sin(u) + u\cos(u))$
(vi) $u^2 + (tu + 1)u' = 0$

AUDITORIUM EXERCISE CLASS 3

Exercise 4
(i)
$$(2t, u) + (t, t) = 0$$
 if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$
 $(1 + 2t, u) = 0$ if $(1 + 2t, u) = 0$ if

(ii)
$$u^{i} + 2t u = e^{t-t^{i}} \rightarrow (2t u - e^{t-t^{i}}) + (u^{i} = 0$$

$$\frac{2t}{2u} = 2t - 0 = 2t$$

$$\frac{2t}{2u} = 0$$
NOT EXACT! Zook for integrating

$$\frac{2t}{2t} = 0$$
NOT EXACT! Zook for integrating for integrating

$$\frac{2t}{2t} = 0$$
NOT EXACT! Zook for integrating for integ

EXERCISE 1

$$2t^{2} u''_{+} + tu'_{-} - 3u = 0, t>0 \qquad \Rightarrow \text{ tules-Country obs}$$

Set $y(s) := u(e^{5}), t =: e^{3} \qquad \Rightarrow \qquad y'(s) = t:u'(t)$

$$z_{+}u''(t) = y''(s) - y'(s)$$

Substitute:

$$2ly''_{+}(s) - y(s) + y'(t) - 3y(s) = 0$$
we will see this at a later point in the theory...
(r) $\begin{bmatrix} 2y''_{-} - y'_{-} - 3y = 0 \end{bmatrix} \leftarrow \begin{bmatrix} is a 2^{n} - oder, linear ODE with \\ constant coefficients \end{bmatrix}$
Substitute:

$$2l_{+}u''_{+}(s) - y'(s) = 0 \qquad \text{we will see this at a later point in the theory...}$$

(r) $\begin{bmatrix} 2y''_{-} - y'_{-} - 3y = 0 \end{bmatrix} \leftarrow \begin{bmatrix} is a 2^{n} - oder, linear ODE with \\ constant coefficients \end{bmatrix}$
Substitute:

$$2h^{2} \cdot y(s) - \lambda y(s) - 3y(s) = 0 \Rightarrow y(s) (2h^{2} - \lambda - 3)$$

 $y(s) = c_1 \cdot (e^{5})^{3/2} + c_2 \cdot (e^{5})^{-1}, \quad c_3, c_2 \in \mathbb{R}$ Substitute back: $u(t) = c_1 t^{3/2} + c_2 t^{-1}, \quad c_1, c_2 \in \mathbb{R} \longrightarrow \text{this is the general sole of our original obtell$