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Similarity ODE

A first-order ODE of the type

u'(t) = f(ﬁtt)) (1)

for some function f:/ — R is called a similarity equation.

It can be solved by applying a change of variables: setting y(t) := ul®)
is u'(t) = % (t-y(t)) =y(t)+ty’(t). Thus (1) becomes

y(t) + ty'(t) = f(y(t)) — separable variables ODE in y
Finally, substitute back to find u general sol. of (1).
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Example 1

Find the general solution of the ODE

4 4
tt+u
,_
u = e t+0.
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Example 1

Find the general solution of the ODE

4, 4
t"+u
,_
u = L t+0.

Rewriting the equation it is v’ = (5) + ¢, which is a similarity equation

with f(y) =y +y~> for y(t) :=%. Apply the substitution:
y(t) =% = u(t) =ty(t) = u'(t) = y(t) + ty'(1).
We obtain the separable variable ODE: y'+ ty’ = y'+ y3
/y3dy _ fy3y'dt _ f %dt
yH(t) =4Injt|+ € = y(t) = =(In(t*) + O)Y*, CeR.
Substitute back: u(t) = ty(t) = «t(In(t*) + C)/*, CeR.
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Riccati equation®

A first order (non-linear) equation of the form
u'(t) = a(t)u(t) + b(t)u?(t) + c(t), with a,b,ceC(/) (2)
is called Riccati differential equation.

Suppose we know a particular solution uy, of (2).
Then the function v(t) := u(t) — up(t) solves the Bernoulli ODE

V/(t) = [a(t) + 2b(t)up(t)]v(t) + b(t)v3(t).
Thus setting y(t) := v71(t) = m we find the first-order linear ODE
y'(t) = —y(t)[a(t) +2b(t)up(t)] - b(t) (3)

to be solved in y. Finally, substitute back to find u general sol. of (2).

*
Studied by the Venetian mathematician Jacopo Riccati (1676-1754)
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Example 2

Find the general solution of the ODE v’ = —u? + t2—2 for u=u(t) and t > 0.
It is a Riccati equation with a(t) =0, b(t) =-1 and c(t) = t% Taking

up(t) = % k € R as Ansatz for a particular solution, find the appropriate k.
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Example 2

Find the general solution of the ODE v’ = —u? + 5, for u = u(t) and t > 0.

t21

It is a Riccati equation with a(t) =0, b(t) = -1 and c(t) = 5. Taking
up(t) = ’; k € R as Ansatz for a particular solution, find the appropriate k.

By substitution we see that u,(t) = -1/t is a solution.
Let y(t) := m and applying (3) the ODE becomes:

y'(t) =-y()[0+2(-1)(-1/t)] + 1 =1-2y(t)/t

Solving the latter in y yields y(t) =1 >+ for CeR.

t2 '
Returning to u we obtain:

2 3
u(t) = up(1) + ﬁ ) _% " t33i c ti; + g) voou(t) = up(t) = -1/t
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Euler-Cauchy equation®
A special type of linear homogeneous ODE of arbitrary order m
amt™ul™ (£) + -+ apt?u (t) + aytu' (¢) + agu(t) = 0

with a; € R and a,, # 0 is called Euler-Cauchy differential equation.
In particular, we consider the second-order case:

apt?u” (t) + aptu/(t) + agu(t) = 0 (4)

*
Named after the Swiss mathematician Leonhard Euler (1707-1783) and the French mathematician/engineer
Augustin-Louis Cauchy (1789-1857).
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Euler-Cauchy equation®
A special type of linear homogeneous ODE of arbitrary order m

amt™ul™ (£) + -+ apt?u (t) + aytu' (¢) + agu(t) = 0

with a; € R and a, # 0 is called Euler-Cauchy differential equation.
In particular, we consider the second-order case:

apt?u” (t) + aptu/(t) + agu(t) = 0 (4)

When solving in t > 0, we can apply the substitution s := In(t), from which
t = e°, and introducing the function y(s) := u(e®) = u(t) we obtain:

y'(s) =t (1)
y'(s) = 2" () + tu'(t) = t*u"(t) = y"(s) = y'(s)
Inserting into (4) returns the following second-order linear homogeneous

ODE with constant coefficients:

a2 (y"(s) - y'(s)) +ay'(s) + aoy(s) =0

*
Named after the Swiss mathematician Leonhard Euler (1707-1783) and the French mathematician/engineer
Augustin-Louis Cauchy (1789-1857).
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Exact differential equations

Let D c R? open. A first order ODE of the form

F(t,u(t)) +g(t,u(t)) u'(t)=0 (5)

is called exact in D if there exists a C! potential 1) : D - R such that

{g—f(t, u) = £(t,u)
g_lﬁ(tv u) = g(t,u),

for all (t,u) € D. In such a case, u = u(t) solves (5) if and only if

@ () = 2t (D) + 20 0) S = (1) + (8, 0) 0 (1) =0
> YP(t,u(t)) = K, for every K ER.
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Necessary and sufficient conditions to exact ODEs
Determining if an ODE of the kind
f(t,u(t)) +g(t,u(t)) u'(t)=0 (5)

is exact by applying the definition may not be immediate.
For this reason, we make use of the following criterion:

Theorem (integrability criterion for exact ODEs)
If f and g are C1(D) with D ¢ R? simply connected, then:

(5) is exact in D — —(t u) = i(t, u), forall (t,u)eD.
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Necessary and sufficient conditions to exact ODEs
Determining if an ODE of the kind
f(t,u(t)) +g(t,u(t)) u'(t)=0 (5)

is exact by applying the definition may not be immediate.
For this reason, we make use of the following criterion:

Theorem (integrability criterion for exact ODEs)
If f and g are C1(D) with D ¢ R? simply connected, then:

(5) is exact in D — —(t u) = f(t, u), forall (t,u)eD.

Example: the differential equation 2tu(t) + (£ + u?(t) + 3u(t))u'(t) = 0

is exact in R?, since af(t u)=2t= t(t, u) for every (t,u) e R?.
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Integrating factor

In case the ODE

F(t,u(t)) +g(t,u(t)) u'(t)=0 (5)

is NOT exact, we look for an equivalent equation (i.e. with same solution)
multiplying (5) by an integrating factor h = h(t,u(t)) #0, that is

h(t,u(t)) - £(t,u(t)) + h(t, u(t)) g(t, u(t)) - u'(t) =0, (6)
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Integrating factor

In case the ODE

F(t,u(t)) +g(t,u(t)) - u'(t) =0 (5)

is NOT exact, we look for an equivalent equation (i.e. with same solution)
multiplying (5) by an integrating factor h = h(t,u(t)) #0, that is

h(t,u(t)) - f(t,u(t)) +h(t,u(t)) g(t,u(t)) u'(t) =0, (6)
and setting the integrability criterion for h-f, h- g:

Ohf . Ohg

E(t’ u) o (t,u) = (6) exact.

To determine h, look first for Ansatz of the type h = h(t) or h= h(u).
Once h is obtained, solve the exact ODE (6) by finding a potential and
setting ¢ (t, u(t)) = K, with K € R arbitrary.
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Exercises

Exercise 1. Solve the following Euler-Cauchy differential equation
262w+t ~3u=0, t>0.

Hint: linear, homogeneous ODEs in s with constant coefficients admit
solutions of the type e*s...

Exercise 2. Solve by substitution the following similarity differential
equations.

+ 2t
(i) u =2 =L 120

2 + x2

(ii)>'<= , t#0
tx
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Exercise 3. Solve the following Riccati differential equations. Use the hints
to find a particular solution first.

(i) ' +6u*=1/t?, t>0

with particular sol. up(t) := % +f
(i) u' +4t = tu?

with particular sol. a constant
i) 30"+ xPu—-u? =2x* x>1

with particular sol. a polynomial of degree 2 in x
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Exercise 4. For any of the following differential equations, determine:
@ Which one are exact.
@ For each exact equation, compute a corresponding potential 1.

@ For each non-exact equation, determine an integrating factor
h = h(t,u) such that the new ODE is exact.

@ Determine the general solution of the exact ODEs by solving the
(algebraic) level set equation for the potential ¥ (t, u(t)) = K.

(i) 2tu+ (> +3)u’' =0
(if) U +2tu= et

(i) u+(x-1)u" =-2x, x> 1

(iv) 3x® + u? +2u(1+x)u' = 0, x € (1,10)

(v) —wucos(t) = u'(sin(t) +sin(u) + ucos(u))

(vi) *+ (tu+ 1)’ =0
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