Auditorium Exercise Sheet 1 Differential Equations I for Students of Engineering Sciences

Eleonora Ficola Department of Mathematics, Universität Hamburg

Technische Universität Hamburg

Winter Semester 2024/2025

21.10.2024

General information on the DGL I course

- Lecturer: Professor Thomas Schmidt
- Lectures (English, weekly): Tue 16:45-18:15 Audimax II
- Tutor (English): Eleonora Ficola e-mail: eleonora.ficola@uni-hamburg.de office hour (bi-weekly): Mo 14:30-15:30 E4.013
- Auditorium Exercise class (English, bi-weekly): Mo 09:45-11:15 H0.16
- Exercise groups (English, bi-weekly):
 - Mo 11:30-13:00 H0.01
 - Mo 16:00-17:30 N0009
 - Tue 08:00-09:30 O-007
 - Tue 15:00-16:30 D1.021

• Exercises/Homework at: DGL I - Lecture material WiSe 2024/25

Table of contents

2 Resolution of first-order linear ODEs

Introduction to ordinary differential equations

• Previously: given an algebraic equation/system, look for solution(s) among a certain vector space.

Now: given a differential equation (ODE)/system of ODEs, look for solution(s) in a function space.

• A (real, scalar) ODE is an equation in which a function u = u(t) and its derivative(s) $u', u'', \ldots, u^{(m)}$ (up to order $m \in \mathbb{N}$) are related:

 $F(t, u, u', u'', \dots, u^{(m)}) = 0 \rightarrow m$ -th order ODE in implicit form $u^{(m)} = f(t, u, u', u'', \dots, u^{(m-1)}) \rightarrow m$ -th order ODE in explicit form where $u: I \rightarrow \mathbb{R}, I \subseteq \mathbb{R}$ domain of definition.

• A function \overline{u} defined on I is solution of $F(t, u, u', u'', \dots, u^{(m)}) = 0$ if

$$F(t,\overline{u}(t),\overline{u}'(t),\overline{u}''(t),\ldots,\overline{u}^{(m)}(t)) = 0 \quad \text{ for all } t \in I.$$

Introduction to ordinary differential equations

- Notice that in case an ODE admits a solution \overline{u} on *I*, then we cannot expect \overline{u} to be unique!
- The collection of all the possible solution of an ODE is called **general solution** of the ODE.

• Example 1:
$$u' = 4u$$
, where $u = u(t)$ defined on $I = \mathbb{R}$.

 $u \equiv 0$ is a (trivial) solution

 $u(t) = e^{4t}$ solves the ODE, but (for example) also $u(t) = 9e^{4t}$!

The general solution of u' = 4u is given by $u(t) = \mathbb{C}e^{4t}$, $C \in \mathbb{R}$.

CHECK:
$$u'(t) = (Ce^{4t})' = 4Ce^{4t} = 4u(t) \checkmark$$

To determine a precise solution, we need to impose some restrictions to the ODE: initial and/or boundary conditions.

• Example of initial value problem (IVP):

$$\begin{array}{ll} (u'' = f(t, u, u') & \leftarrow & \text{ODE of order } m = 2\\ u(t_0) = u_0\\ u'(t_0) = z_0 & \leftarrow & \text{need 2 conditions (here on u and u')} \end{array}$$

with $t_0 \in I$, $u_0, z_0 \in \mathbb{R}$.

• Example of boundary value problem (BVP):

$$\begin{cases} u'' = f(t, u, u') &\leftarrow \text{ ODE of order } m = 2\\ u(a) = u_a\\ u(b) = u_b &\leftarrow \text{ need 2 boundary values}^* \end{cases}$$

where I = [a, b] and $u_a, u_b \in \mathbb{R}$.

^{*}In general, boundary condition of the form $r_i(u(a), u(b)) = 0$, for $i \in \{1, ..., m\}$.

Example of initial value problem

• Solve the ODE in Example 1 with initial datum u(2) = 5, i.e. solve IVP given by the system

$$\begin{cases} u' = 4u \\ u(2) = 5. \end{cases}$$

Consider the general solution $u(t) = Ce^{4t}$, $C \in \mathbb{R}$ of the ODE and find the appropriate C by substituting the initial condition:

$$5 = u(2) = Ce^8 \implies C = 5e^{-8},$$

therefore the (unique!) solution of the IVP is given by $u(t) = 5e^{4(t-2)}$.

Linear differential equations

An *m*-th order ODE in u = u(t) is **linear** if the ODE is a linear combination of the derivatives $u, u', \ldots, u^{(m)}$, i.e. it is of the form

$$A_m(t)u^{(m)} + A_{m-1}(t)u^{(m-1)} + \dots + A_2(t)u'' + A_1(t)u' + A_0(t)u = b(t) (1)$$

with coefficients given by the functions $A_0, A_1, \ldots, A_m: I \to \mathbb{R}$ and inhomogeneity term $b: I \to \mathbb{R}$.

Linear differential equations

An *m*-th order ODE in u = u(t) is **linear** if the ODE is a linear combination of the derivatives $u, u', \ldots, u^{(m)}$, i.e. it is of the form

$$A_m(t)u^{(m)} + A_{m-1}(t)u^{(m-1)} + \dots + A_2(t)u'' + A_1(t)u' + A_0(t)u = b(t)$$
(1)

with coefficients given by the functions $A_0, A_1, \ldots, A_m: I \to \mathbb{R}$ and inhomogeneity term $b: I \to \mathbb{R}$.

- If the coefficients A_0, A_1, \ldots, A_m are constant in I, we say that (1) is a linear ODE with constant coefficients.
- In case b ≡ 0 in I, the equation (1) is called homogeneous, otherwise it is inhomogeneous.
- For a linear ODE (1), the corresponding homogeneous ODE is the equation

$$A_m(t)u^{(m)} + A_{m-1}(t)u^{(m-1)} + \dots + A_2(t)u'' + A_1(t)u' + A_0(t)u = 0$$
(2)

Examples of linear/non-linear ODEs

- u' = 4u (lin. hom. const. coeff.)
- $u' = 4u + 2e^t$ (lin. inhom. const. coeff.)
- $9u''/u u + u^3 = 7$ (non-lin. inhom.) \sim related hom: $9u''/u u + u^3 = 0$
- $5\cos^4(t)u''' u' + t^2 = 0$ (lin. inhom., non-const. coeff.) \sim related hom: $5\cos^4(t)u''' u' = 0$
- $u''' 3u' = u^2$ (non lin. hom.)

NOTE: An *m*-th order linear ODE in u = u(t) with coeff. $A_0, A_1, \ldots, A_m, b: I \to \mathbb{R}$ is

$$A_m(t)u^{(m)} + A_{m-1}(t)u^{(m-1)} + \dots + A_2(t)u'' + A_1(t)u' + A_0(t)u = b(t)$$

Resolution of first-order linear ODEs

A linear ODE of order m = 1 is of the kind

u' = a(t)u + b(t).

For a, b continuous, there is an explicit formula to find its general solution.

Resolution of first-order linear **HOMOGENEOUS** ODEs Consider the differential equation

$$u' = a(t)u, \tag{3}$$

with $a: I \to \mathbb{R}$ continuous, let $A(t) := \int a(t) dt$. The general solution of (3) is given by

$$u(t) = Ce^{A(t)}, \qquad C \in \mathbb{R}.$$

There are infinitely many solutions (since $C \in \mathbb{R}$)!

Differential Equations I

Resolution of first-order linear ODEs

A linear ODE of order m = 1 is of the kind

u' = a(t)u + b(t).

For *a*, *b* continuous, there is an explicit formula to find its general solution. Resolution of first-order linear **INHOMOGENEOUS** ODEs Consider the differential equation

$$u' = a(t)u + b(t), \tag{4}$$

with $a, b: I \to \mathbb{R}$ continuous, let $A(t) := \int a(t) dt$, $B^*(t) := \int b(t) e^{-A(t)} dt$. The general solution of (3) is given by

$$u(t) = e^{A(t)}(B^*(t) + C), \qquad C \in \mathbb{R}.$$

There are infinitely many solutions (since $C \in \mathbb{R}$)!

Differential Equations I

Example. Resolution of a first-order linear homogeneous ODE

Example 2. Find the general solution u = u(t), $t \in \mathbb{R}$ of

$$u' - 6t^2 u = 0. (5)$$

It is a first order, linear ODE with $a(t) = 6t^2$ continuous and $b(t) \equiv 0$. Employ the formula for homogeneous ODEs: $u(t) = Ce^{A(t)}, C \in \mathbb{R}$. Compute $A(t) := \int a(t) dt = \int 6t^2 = 2t^3$ (+const., set const. = 0).

The general solution of (5) is given by:

$$u(t) = Ce^{2t^3}, \qquad C \in \mathbb{R}.$$

If possible, CHECK that Ce^{2t^3} is solution!

Example. Resolution of a first-order linear inhomogeneous ODE

Example 3. Find the general solution u = u(t), $t \in \mathbb{R}$ of

$$u' - 6t^2 u = t^2. (6)$$

It is a first order, linear ODE with $a(t) = 6t^2$ and $b(t) = t^2$. Employ the formula for inhomogeneous ODEs: $u(t) = e^{A(t)}(B^*(t) + C)$, $C \in \mathbb{R}$. Compute $A(t) := \int a(t) dt = \int 6t^2 = 2t^3$ (+const., set const. = 0) and $B^*(t) := \int b(t)e^{-A(t)} dt = \int t^2e^{-2t^3} dt = -e^{-2t^3}/6$.

The general solution of (6) is given by:

$$u(t) = e^{2t^3}(-e^{-2t^3}/6 + C) = Ce^{2t^3} - 1/6, \qquad C \in \mathbb{R}.$$

If possible, CHECK that $Ce^{2t^3} - 1/6$ is solution!

Example. Resolution of a first-order linear inhomogeneous ODE

Example 3. Find the general solution u = u(t), $t \in \mathbb{R}$ of

$$u' - 6t^2 u = t^2. (6)$$

It is a first order, linear ODE with $a(t) = 6t^2$ and $b(t) = t^2$. Employ the formula for inhomogeneous ODEs: $u(t) = e^{A(t)}(B^*(t) + C)$, $C \in \mathbb{R}$. Compute $A(t) := \int a(t) dt = \int 6t^2 = 2t^3$ (+const., set const. = 0) and $B^*(t) := \int b(t)e^{-A(t)} dt = \int t^2e^{-2t^3} dt = -e^{-2t^3}/6$.

The general solution of (6) is given by:

$$u(t) = e^{2t^3}(-e^{-2t^3}/6 + C) = Ce^{2t^3} - 1/6, \qquad C \in \mathbb{R}.$$

NOTE: The general integral of (6) is given by the difference of $u_{\text{hom}} := Ce^{2t^3}$ gen. int. of (5), and $u_p := -1/6$ particular sol. of (6).

Exercises

Exercise 1. Determine the general solutions of the following (1st order, linear) ODEs. Unless specified, consider $I = \mathbb{R}$.

(i)
$$u' - 5u + 10 = t$$

(ii) $\dot{x} = \cos(5t)(x+1)$
(iii) $u' + 2tu = e^{t-t^2}$
(iv) $y' + 4t^3y - \sin(t)e^{-t^4} = 0$
(v) $u'/2 - u = 2t^2$
(vi) $u' = \frac{1}{t^2 - 1}, -1 < t < 1$
(vii) $(y')^2 = y'\sin(3t)$
(viii) $(y')^2 = y'\sin^2(3t)$

Exercise 2. For each ODE of Exercise 1, determine the (unique) function satisfying the ODE and having value -1 at time t = 0.

Exercises

Exercise 3. Consider the differential equation

$$u'' + 9u - 3t = 0 \tag{7}$$

and the functions $u_1(t) := \cos(3t)$, $u_2(t) := \sin(3t)$, $u_3(t) := t/3$.

- Classify the equation (7).
- Verify that the functions $u_1 + u_3$, $u_2 + u_3$ and u_3 are solutions of (7).
- Write the associated homogeneous equation of (7).
- Verify that any linear combination of u_1, u_2 is a solution of the homogeneous equation of (7).
- Can you find a linear combination of u_1 and u_3 which does NOT solve (7)? Why?

Exercise 4.

The ICE train Hamburg-Berlin travels a distance of 317 km departing at time $t_0 = 0s$ with a constant acceleration $a = 3m/40s^2$. The train should reach Berlin HBF after 3 hours and 10 minutes. Unfortunately, the train has to stop after just 10 minutes due to unexpected construction work...

Differential Equations I

Exercise 4.

The ICE train Hamburg-Berlin travels a distance of 317 km departing at time $t_0 = 0s$ with a constant acceleration $a = 3m/40s^2$. The train should reach Berlin HBF after 3 hours and 10 minutes. Unfortunately, the train has to stop after just 10 minutes due to unexpected construction work... After 2 hours, the train can continue on its route, and the driver tries to make up for the time lost by setting an acceleration (in km/h^2) proportional to the instantaneous speed (in km/h) by a constant 4, summed by 1.

- Does the ICE arrive at Berlin HBF with a delay of less than 1 hour?
- Sketch the graph of u = u(t) representing the position at time $t \ge 0$.

Differential Equations I

Appendix Table of integrals

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} \quad (n \neq -1)$$
2.
$$\int \frac{1}{x} dx = \ln |x|$$
3.
$$\int e^x dx = e^x$$
4.
$$\int a^x dx = \frac{a^x}{\ln a}$$
5.
$$\int \sin x \, dx = -\cos x$$
6.
$$\int \cos x \, dx = \sin x$$
7.
$$\int \sec^2 x \, dx = \tan x$$
8.
$$\int \csc^2 x \, dx = -\cot x$$
9.
$$\int \sec x \tan x \, dx = \sec x$$
10.
$$\int \csc x \cot x \, dx = -\csc x$$
11.
$$\int \sec x \, dx = \ln |\sec x + \tan x|$$
12.
$$\int \csc x \, dx = \ln |\csc x - \cot x|$$
13.
$$\int \tan x \, dx = \ln |\sec x|$$
14.
$$\int \cot x \, dx = \ln |\sin x|$$
15.
$$\int \sinh x \, dx = \cosh x$$
16.
$$\int \cosh x \, dx = \sinh x$$
17.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right)$$
18.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \left(\frac{x}{a}\right)$$
*19.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left|\frac{x - a}{x + a}\right|$$
*20.
$$\left(\frac{dx}{\sqrt{x^2 \pm a^2}} = \ln |x + \sqrt{x^2 \pm a^2}|\right)$$

Appendix

Some trigonometric identities

Double Angle Identities

$$sin(2\theta) = 2 sin\theta cos\theta$$
$$cos(2\theta) = cos^{2}\theta - sin^{2}\theta$$
$$cos(2\theta) = 2 cos^{2}\theta - 1$$
$$cos(2\theta) = 1 - 2 sin^{2}\theta$$
$$tan(2\theta) = \frac{2 tan\theta}{1 - tan^{2}\theta}$$

Sum to Product of Two Angles

$$\sin\theta + \sin\phi = 2\sin\left(\frac{\theta + \phi}{2}\right)\cos\left(\frac{\theta - \phi}{2}\right)$$
$$\sin\theta - \sin\phi = 2\cos\left(\frac{\theta + \phi}{2}\right)\sin\left(\frac{\theta - \phi}{2}\right)$$
$$\cos\theta + \cos\phi = 2\cos\left(\frac{\theta + \phi}{2}\right)\cos\left(\frac{\theta - \phi}{2}\right)$$
$$\cos\theta - \cos\phi = -2\sin\left(\frac{\theta + \phi}{2}\right)\sin\left(\frac{\theta - \phi}{2}\right)$$

Half Angle Indentities

$$sin^{2}\theta = \frac{1 - cos(2\theta)}{2}$$
$$cos^{2}\theta = \frac{1 + cos(2\theta)}{2}$$
$$tan^{2}\theta = \frac{1 - cos(2\theta)}{1 + cos(2\theta)}$$

Product to Sum of Two Angles

$$\sin\theta \sin\phi = \frac{[\cos(\theta - \phi) - \cos(\theta + \phi)]}{2}$$
$$\cos\theta \cos\phi = \frac{[\cos(\theta - \phi) + \cos(\theta + \phi)]}{2}$$
$$\sin\theta \cos\phi = \frac{[\sin(\theta + \phi) + \sin(\theta - \phi)]}{2}$$
$$\cos\theta \sin\phi = \frac{[\sin(\theta + \phi) - \sin(\theta - \phi)]}{2}$$

AUDITORIUM EXERCISE CLASS 1 $u' = a(t) \cdot u + b(t)$ EXERCISE 1+2 u= u(+) (i) W-54 +10=t ← 1st-order limear ODE inhom. $u(t) = e^{A(t)} (B^{\dagger}(t) + C), C \in \mathbb{R}$ $A(t) = \int a(t) dt$ $u' = \underbrace{u}_{a(t)} + \underbrace{(t-10)}_{b(t)}$ B*(+) = [= A(t) b(t)ot $A(t) = \int 5dt = 5t + X_{1} = 5t$ $B^{+}(t) = \int \bar{e}^{5t}(t-10)dt = -10\int \bar{e}^{5t}dt + \int t\bar{e}^{5t}dt = -10\bar{e}^{5t} - t\bar{e}^{5t} + 1 \bar{e}^{5t}dt = (2-t\bar{e})\bar{e}^{5t} + 1 \bar{e}^{5t}dt = (2-t\bar{e})\bar{e}^{5t}dt = (2-t\bar{e})\bar{e}^{5t}dt$ Sfg'=fg-Jfg (Mt. by povets f(t) = t f'(t) = 1 $g'(t) = \bar{e}^{st}$ $g(t) = \bar{e}^{st}$ So: $u(t) = e^{5t} (C + 49 - 5t = e^{5t}) = 49 - 5t + Ce^{5t}, CER$ polymonical · exponential 7 (power 1 of t) f gi Solve: $-1 = u(0) = \frac{49}{25} + C = \frac{74}{25}$ $= (50-5t-1) \frac{-5t}{25} = (49-5t) \frac{-5t}{25}$ $Se. IVP: u(t) = \frac{49-5t-740}{25}$ 1st redur, limear ODE, inhom. (11) $\chi(t) = cos(5t) (\chi(t)+d) =$ $= \underbrace{\cos(5t)}_{a(t)} \times + \underbrace{\cos(5t)}_{b(t)}$ $A(t) = \int \cos(st) dt = \frac{\sin(st)}{5}$ $B^{x}(t) = \int e^{-\sin(st)/5} \cos(st) dt = -e^{\sin(st)/5}$ sim(st)/s - sim(st)/s $x(t) = e (-e + c) = C \cdot e^{sim(st)/s} - 1, t \in \mathbb{R}$ Set |V|; $-1 = X(0) = C \cdot e^{-1} - 1 = C - 1 \Rightarrow C = 0 - 3 \cdot set |VP|$; X(t) = -1, terk

EXERCISE 3 (P)
$$u_{1}^{(1)} + 9u - 3t = 0$$

 $u_{3}^{(1)} = 0$
 $u_{3}^{(1)} = 0$
 $u_{4}^{(1)} = \cos(3t)$
 $u_{4}^{(1)} = \cos(3t)$
 $u_{4}^{(1)} = \sin(3t)$
 $u_{4}^{(1)} = \sin(3t)$
 $u_{4}^{(1)} = \sin(3t)$
 $u_{4}^{(1)} = \sin(3t)$
 $u_{4}^{(1)} = \frac{3}{2}$
 $u_{4}^{(1)} = \frac{3}{2}$

Concession ding homogeneous
$$u'' + 9u = 0$$

 $DE:$ $u'' + 9u = 0$
 $Ainear combination of u_{1}, u_{2} is: $u(t) = d \cdot u_{1}(t) + \beta \cdot u_{2}(t)$, $u_{1}BER$
 $\tilde{u}' = u_{1}' + \beta u_{2}'$
 $\tilde{u}'' + \beta u_{2}'' + \beta u_{2}'' + \beta u_{2}'' + \beta u_{1} + \beta u_{2}'' + 9u_{1} + \beta u_{2} = u(u_{1}'' + 9u_{1}) + \beta u_{2}'' + 9u_{2}) = u(u_{1}'' + 9u_{1}) + \beta u_{2}'' + 9u_{2}) = u(u_{1}'' + 9u_{1}) + \beta (-9 \sin(at) + 9 \sin(at)) = 0, \forall u_{1}\beta ER$
 $Meaning: any linear combination = u(-9 \cos(at) + 9 \cos(at)) + \beta(-9 \sin(at) + 9 \sin(at)) = 0, \forall u_{1}\beta ER$
 $Meaning: any linear combination = u(-9 \cos(at) + 9 \cos(at)) + \beta(-9 \sin(at) + 9 \sin(at)) = 0, \forall u_{1}\beta ER$$

Lineax combination of 41,43 is: $\tilde{u} := \alpha u_1 + \beta u_3, \ \alpha, \beta \in \mathbb{R}$ $\widetilde{u}'' + 9\widetilde{u} - 3t = \alpha u_1'' + \beta u_3'' + 9\alpha u_1 + 9\beta u_3 - 3t = \alpha (u_1' + 9\widetilde{u}_1) + \beta (u_3'' + 9u_3) - 3t = \beta \cdot 3t - 3t = 3t(\beta \cdot 1)$ $Tm \text{ ordere for } \widetilde{u} \text{ to solve } (7) \text{ we need}: \quad \widetilde{u}'' + 9\widetilde{u} - 3t = 0, \forall t, \text{ namely } 3t(\beta \cdot 1) = 0, \forall t \in \mathbb{R} \Leftrightarrow$ $Omly \text{ combinations of the type } \alpha u_1 + u_3, \alpha \in \mathbb{R} \text{ con solve } (7).$ $\beta = 1$