Differential Equations I for Students of Engineering Sciences

Sheet 7, Exercise class

To shorten the notation we employ the Doetsch symbol:

$$F(s) := \mathscr{L}f(s) := \int_0^\infty e^{-st} f(t) dt \iff f(t) \circ - \bullet F(s)$$

The following correspondences or relations for $\text{Re}\left(s\right) > \gamma$, which were either proved in the lecture or could be proved completely analogously to the lectures procedure, may be used. We always have $f(t)=0, \forall t<0$.

$f(t), t \ge 0$	F	γ
1 i.e. $h_0(t)$	$\frac{1}{s}$	0
$h_a(t)$	$e^{-as}\frac{1}{s}$	0
$t^n, n \in \mathbb{N}$	$\frac{n!}{s^{n+1}}$	0
$e^{at}, a \in \mathbb{C}$	$\frac{1}{s-a}$	$\operatorname{Re}\left(a\right)$
$e^{at}\sin(\omega t), \omega \in \mathbb{R}$	$\frac{\omega}{(s-a)^2 + \omega^2}$	0
$e^{at}\cos(\omega t), \omega \in \mathbb{R}$	$\frac{s-a}{(s-a)^2 + \omega^2}$	0

 $h_a(t)$ for $a \ge 0$ is defined as follows:

$$h_a(t) := \begin{cases} 1 & t \ge a \ge 0, \\ 0 & t < a. \end{cases}$$

If $f(t) \circ - \bullet F(s)$, then the following shifting theorems hold.

I) $h_a(t)f(t-a)$ \longrightarrow $e^{-sa}F(s)$

Shifting in the original space Multiplication with exponential function in the image space

$$II) \qquad e^{at} f(t) \qquad \circ - \bullet \quad F(s-a)$$

$$a \in \mathbb{C}$$

Shifting in the image space/ Multiplication with exponential function in the original space

Exercise 1:

a) Which is the algebraic equation resulting from Laplace transformation of the initial value problem

$$u'' - 2u' + u = \sin(4t) + 2te^{-t}$$
, for $t > 0$, $u(0) = 1$, $u'(0) = 0$?

Please justify your answer by intermediate computations.

Compute the solution of the algebraic equation.

b) Let $F(s) = \frac{1}{s(s+1)^2}$ be the Laplace transform of the function

$$f: \mathbb{R}_0^+ \to \mathbb{R}, \quad f: t \mapsto f(t).$$

Determine f(t).

Solution:

a)
$$u(t) \circ - \bullet U(s)$$
, $u'(t) \circ - \bullet sU(s) - u(0) = sU(s) - 1$, $u''(t) \circ - \bullet s^2 U(s) - s - u'(0) = s^2 U(s) - s$, $\sin(4t) \circ - \bullet \frac{4}{s^2 + 16}$, $t \circ - \bullet \frac{1}{s^2}$, $e^{-t}t \circ - \bullet \frac{1}{(s+1)^2}$.

The IVP becomes

$$(s^2 - 2s + 1)U + 2 - s = \frac{4}{s^2 + 16} + \frac{2}{(s+1)^2}$$

with the solution

$$U(s) = \frac{4}{(s^2 + 16)(s - 1)^2} + \frac{2}{(s + 1)^2(s - 1)^2} + \frac{s - 2}{(s - 1)^2}$$

b) The partial fraction decomposition ansatz

$$\frac{as+b}{s^2+2s+1} + \frac{c}{s} = \frac{1}{s(s+1)^2}$$
 returns
$$cs^2 + 2cs + c + as^2 + bs = 1 \iff c = -a, -2c = b, c = 1.$$

$$\frac{-s-2}{(s+1)^2} + \frac{1}{s} = \frac{-1}{(s+1)^2} - \frac{s+1}{(s+1)^2} + \frac{1}{s}$$

$$= \frac{-1}{(s+1)^2} - \frac{1}{s+1} + \frac{1}{s} \bullet - \circ - te^{-t} - e^{-t} + 1.$$

Exercise 2:

a) For the following matrices \boldsymbol{A} analyse the stability of the stationary point $(0,0)^T$ of the linear system $\boldsymbol{u}'(t) = A \boldsymbol{u}(t)$.

$$\mathbf{i)} \ \ A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \qquad \quad \mathbf{ii)} \ \ A = \begin{pmatrix} -1 & 0 \\ -1 & -1 \end{pmatrix}, \qquad \quad \mathbf{iii)} \ \ A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

b) Consider the following linear system

$$\dot{\boldsymbol{u}}\left(t\right) = \begin{pmatrix} -3 & 0 & 3 \\ -1 & -\gamma & 1 \\ 3 & 0 & -3 \end{pmatrix} \quad \boldsymbol{u}\left(t\right).$$

Determine the stability behaviour of the stationary point $(0,0,0)^T$ depending on the parameter $\gamma \in \mathbb{R}$.

Sketch of solution:

a) i) $P(\lambda) = (1 - \lambda)^2 + 1 = 0 \iff \lambda_{1,2} = 1 \pm i$. There is at least one eigenvalue with positive real part. $\binom{0}{0}$ is an unstable stationary point.

ii)
$$P(\lambda) = (-1 - \lambda)^2 = 0 \iff \lambda_{1,2} = -1$$
.
The real parts of all eigenvalues are negative. $\binom{0}{0}$ is an asymptotically stable stationary point.

The real parts of all eigenvalues are negative. $\binom{*}{0}$ is an asymptotically stable stationary point.

iii)
$$P(\lambda) = \lambda^2 + 1 = 0 \iff \lambda_{1,2} = \pm i$$
. There is no eigenvalue with positive real part. The eigenvalues with real part zero are simple. $\binom{0}{0}$ is a stable stationary point.

b) Characteristic polynomial: $P(\lambda) = (-\gamma - \lambda)[(3 + \lambda)^2 - 9]$. Eigenvalues: $\lambda_1 = -\gamma$, $\lambda_2 = -3 + 3 = 0$, $\lambda_3 = -3 - 3 = -6$. $\gamma > 0 \iff \lambda_1, \lambda_3 < 0, \lambda_2 = 0$ simple eigenvalue: stable $\gamma < 0 \iff \lambda_1 > 0$: unstable $\gamma = 0 \implies \lambda_1 = 0, \lambda_2 = 0, \lambda_3 = -6$

Eigenspace corresponding to the double eigenvalue zero:

$$\begin{pmatrix} -3 & 0 & 3 \\ -1 & 0 & 1 \\ 3 & 0 & -3 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = 0 \iff v_3 = v_1$$

Eigenvectors:

$$v^{[1]} := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad v^{[2]} := \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

The eigenspace of the eigenvalue zero with multiplicity two has dimension two. The zero solution is stable.

Dates of classes: 22.01.-26.01.2024